DVB 3D-TV

Source: Wikipedia, the free encyclopedia.
DVB 3D-TV Logo

DVB 3D-TV is a new standard that partially came out at the end of 2010 which included techniques and procedures to send a

DVB transmission standards (Cable, Terrestrial or Satellite). Currently there is a commercial requirement text for 3D TV broadcasters and Set-top box
manufacturers, but no technical information is in there.

Nowadays 3D television technology is already in its first steps regarding its standardization, now the major 3D market is in

coding
and transmission standards.

Implantation

The implantation of first generation of DVB 3D-TV will be staggered:

3DTV signals

Diagram of an CSC or FCC 3DTV system

Matrix of signal formats for 3DTV:

Compatibility level 1st generation 3DTV 2nd generation 3DTV 3rd generation 3DTV
Level 4:

HD service compatible (CSC)

2D HD + MVC (L,R formed by matrixing: depth info) 2D HD + MVC (Depth, occlusion and transparency data)
Level 3:

HD Frame compatible compatible (FCC)

Frame compatible + MPEG resolution extension (ex. SVC)
Level 2:

Conventional HD Frame compatible (CFC)

L and R in same HD frame
Level 1:

Conventional HD display compatible (CDC)

Color anaglyph

Frame sequential

Frame sequential 3D video

Regarding how a signal once it's decoded is sent to the

polarized glasses
are then shown to each eye. This involves that the real frame frequency halves the video frame frequency.

Technical features

Frame compatible

In Phase 1 system, only frame-sequential 3D is allowed, using

H.264 as a single image. This allows to handle video as normal HD video using typical channels and interfaces like HDMI, which is possible in this 1.4a version. Frame compatible (CFC)
model is also compatible with 2D HD mode in the same channel, adding some signalling for switching from 2D to 3D.

There are basically two ways to do spatial multiplex: Side by side and Top and bottom, but additional spatial multiplex formats have been proposed in order to improve picture quality by providing a better balance between the V and H resolution.

Side by side

Side by side format

Side by side (SbS) format just put the left and right images one next to the other in an HD image. Because of this, a horizontal

decimate
is required which causes halving of horizontal definition. DVB 3D-TV supports following SbS formats:

1080i @ 50 Hz Side-by-Side
720p @ 50 Hz Side-by-Side
720p @ 59.94 / 60 Hz Side-by-Side
1080p @ 23.97 / 24 Hz Side-by-Side
1080i @ 59.94 / 60 Hz Side-by-Side

Top and bottom

Top and bottom format

Top and Bottom (TaB) format put left and right images one above the other in a HD image. In this case, vertical

decimate
is required which causes halving of vertical definition. DVB 3D-TV supports following TaB formats:

1080p @ 23.97 / 24 Hz Top-and-Bottom
720p @ 59.94 / 60 Hz Top-and-Bottom
  • Not every spatial multiplex format is frame compatible with actual systems. Following formats are non frame compatible:
720p @ 50 /60 Hz
1080p @ 24 Hz

Graphics and text

There are basically two types of text displayed on screen that need additional broadcasting information to be displayed on a 3D display:

Signaling

The main function of signaling for

HDTV full samples/line pictures to create the anamorphic version, if 3D is available. It's interesting to signal also for 3D receivers the 3D events that are available, for which 3D availability should appear on EPG
. For future
3DTV, signal that a 3D version of a 2D service or event is being simulcast
, and vice versa will be needed.

3DTV broadcast in future

Multiview

Multiview video coding is a compression standard appended from

DVB-C2 and DVB-S2
).

Free viewpoint

Total

2D+depth information from them to create a 3D model of the scene. Currently this system is being investigated, but the coding complexity and great bandwidth requirements make current broadcasting applications using Multiview Video Coding
impractical, so a totally new compression scheme and capture techniques need to be investigated.

See also

References

  1. ^ "Sky 3DTV site". Retrieved 2010-12-02.
  2. ^ "Canal+3D site". Archived from the original on 2010-10-02. Retrieved 2010-12-02.
  3. ^ "MVC 3D signal broadcast". Fraunhofer society. 2010. Retrieved 2010-12-02.

External links