Dactyloidae

Source: Wikipedia, the free encyclopedia.

Dactyloidae
Temporal range: Eocene - Recent
Carolina (or green) anole
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Reptilia
Order: Squamata
Suborder: Iguania
Family: Dactyloidae
Fitzinger, 1843
Genera

1–8, see text

Dactyloidae are a family of lizards commonly known as anoles (US: /əˈn.liz/ ) and native to warmer parts of the Americas, ranging from southeastern United States to Paraguay.[1][2] Instead of treating it as a family, some authorities prefer to treat it as a subfamily, Dactyloinae, of the family Iguanidae.[3][4] In the past they were included in the family Polychrotidae together with Polychrus (bush anoles), but the latter genus is not closely related to the true anoles.[5][6]

Anoles are small to fairly large lizards, typically green or brownish, but their color varies depending on species and many can also change it.

Iguania.[11][12]

Anoles are active during the day and feed mostly on small animals such as insects, but some will also take fruits, flowers, and nectar.[7][13][14] Almost all species are fiercely territorial. After mating, the female lays an egg (occasionally two); in many species she may do so every few days or weeks.[7][8][15] The egg is typically placed on the ground, but in some species it is placed at higher levels.[7][16]

Anoles are widely studied in fields such as ecology, behavior, and evolution,[7][17] and some species are commonly kept in captivity as pets.[18] Anoles can function as a biological pest control by eating insects that may harm humans or plants,[19] but represent a serious risk to small native animals and ecosystems if introduced to regions outside their home range.[20][21]

Distribution and habitat

West Cuban anole[22]
Leach's anole has a very small range[23]

Anoles are a very diverse and plentiful group of lizards. They are native to tropical and subtropical South America, Central America, Mexico, the offshore East Pacific Cocos, Gorgona and Malpelo Islands, the West Indies and southeastern United States.[2][7]

A particularly high species richness exists in

Tumbes-Chocó-Magdalena region) than east (Amazon basin), as well illustrated in Ecuador where about 23 of the anole species live in the former region and 13 in the latter.[4][31]

Puerto Rican bush anole, one of sixteen anole species from Puerto Rico and the Virgin Islands[32]

The only species native to the contiguous United States is the

Carolina (or green) anole, which ranges as far west as central Texas, and north to Oklahoma, Tennessee and Virginia.[1][33] Its northern limit is likely related to cold winter temperatures.[34] Several anole species have been introduced to the contiguous US, mostly Florida, but also other Gulf Coast states and California. The most prevalent of these introductions is the brown anole.[1][35][36] In contrast to the contiguous United States, Puerto Rico and the Virgin Islands are home to 16 native species, all endemic.[32]

Anoles inhabit a wide range of habitats, from highlands (up to at least 3,750 m or 12,300 ft above sea level

niche differentiation allows several anoles to inhabit the same locality,[8] with up to 15 species at a single site.[45]

Appearance and behavior

Allison's anole
(female all green) showing the long tail and climbing ability typical of anoles

Anoles vary in size. Males generally reach a larger size than females, but in a few species it is the other way around.[8] Adults of most anoles are between 4 and 8 cm (1.5–3 in) in snout-to-vent length,[46] and between 10 and 20 cm (4–8 in) in total length, including the tail.[1][8] In the smallest, the five-striped grass anole, the snout-to-vent length is about 3 and 3.5 cm (1.2 and 1.4 in) in females and males respectively,[2][46] but it is a relatively long-tailed species.[47] There are several large species that are more than 10 cm (4 in) in snout-to-vent length.[2][48] Males of the largest, the knight anole,[18] reach up to about 19 cm (7.5 in) in snout-to-vent length,[2] 51 cm (20 in) in total length,[1] and 137 g (5 oz) in weight.[49] There are both robust and gracile species, and the head shape varies from relatively broad to elongate.[50]

The tail of anoles varies, but mostly it is longer than the snout-to-vent length. Depending on exact species it can range from slightly shorter to about three times the snout-to-vent.

hydrophobic, resulting in a thin film of air on the skin surface when submerged and preventing water from staying on when exiting the water.[57]

Underneath an anole's toes are pads that have several to a dozen flaps of skin (adhesive

setae) that allow them to cling to many different surfaces, similar to but not quite as efficient as a gecko.[8][9] Despite this similarity, they are very distantly related and the adaptions are the result of convergent evolution in the two groups.[58] The extent of these structures and clinging ability varies, being more developed in anole species that live high in the tree canopy than ones living at lower levels.[59][60] In one extreme are anoles that easily can run up windows.[61][62] In the opposite end of the spectrum is the bulky anole of arid coastal Venezuela and adjacent Colombia, which is the only species completely lacking the specialized toe pad structures.[63][64] The relative length of the limbs vary, mainly between different species, but to some extent also between different populations of a single species. This depends on things like the preferred perch size and whether there are ground-living predators in a habitat.[58][65]

Despite having relatively small eyes, their primary sense is sight, which is excellent and in color.

Hz and relatively low intensity sounds like the click of a camera.[71][72]

Anoles are

diurnal—active during the daytime—but can also be active during bright moonlit nights and may forage near artificial lights.[73][74] Many species frequently bask in the sun to increase their temperature, but others are shade-living and do not.[8]

Colors

Carolina anole
changing from green to brown over the course of a few minutes

Most anoles are brownish or green, but there are extensive variations depending on the exact species.

melanophore-stimulating hormone and other hormones, the melanosomes of the melanophores partially cover the other skin pigment cells, giving the anole a darker or browner color.[76][81] In most cases stress results in a darker/browner color, but in the aquatic anole, a species that is dark brown with a barred pattern and light brown stripes on the sides of its body and head, stress results in paler brown upper parts and the stripes turn pale blue-green.[76]

Their colors during the night when sleeping often differ distinctly from their colors during the day where awake. Among these are some species that otherwise do not drastically change their colors, including certain anoles that generally are brown during the day changing to greenish or whitish when sleeping at night,[76][82] and certain anoles that generally are green during the day changing to brown when sleeping at night.[83]

Puerto Rican giant anoles are usually green, but an uncommon morph (not the result of color change) is gray-brown, as are all young[84]

Disregarding color change, minor individual variations in the basic color and pattern, mostly related to sex or age, are common. In some anole species this variation is more pronounced and not only related to sex and age. An example of this is the basic color of the

Puerto Rican giant anole, a species only able to perform minor color changes (essentially lightness/darkness), juveniles are gray-brown and adults typically green, but an uncommon morph maintains a gray-brown color into adulthood.[84] Similarly, rare morphs of the usually green Carolina anole lack certain pigment cells, giving them a mainly turquoise-blue or yellow color.[88][89]

Dewlap

Dewlap differences (males, except where noted)
Carolina (or green) anole

Striped anole

Aquatic anole, opening and closing dewlap
Fitch's anole, female (dewlap larger and brownish-yellow in male)

Most—but not all—anole species have

Cuban stream anoles are the only where both sexes lack a dewlap, but it is reduced and diminutive in about a dozen other species.[2][91][99]

The dewlap serves as a signal for attracting partners,

sister species that overlap in range and are very similar except for their dewlap color. They are highly aggressive to individuals of their own species, but not the other. When one species has its dewlap color modified to resemble the other, only a relatively minor or no increase in aggression occurs, indicating that they still can separate each other.[103]

Several other

Draco, Otocryptis, Polychrus, Sarada and Sitana, have evolved relatively large, movable dewlaps independently of the anoles.[104][105]

Sexual dimorphism

proboscis anole (male with proboscis)[106]

In some anoles the sexes are very similar and difficult to separated under normal viewing conditions, but most species exhibit clear

microhabitat (for example, males using larger branches than females) and feeding (males on average eating large prey) between the sexes of a single species.[108][109] Males of some species have proportionally far longer heads than females, but in others it is nearly alike.[110][111] The crest along the nape, back and/or tail is larger in the males. In species with tall crests this difference can be obvious, but in small-crested species it is often inconspicuous and easily overlooked, especially when not raised.[8][62][112] The dewlap is often larger in males; in some species only the male has a dewlap.[8] In a few there are differences in the shape of the nose, but this is only known to be prominent in the proboscis and leaf-nosed anoles, which both have long-nosed males and more normal looking females (it is likely that something similar can be seen in smooth anole, but the female of that species is still unknown).[106][113] A less obvious difference between anole sexes is the enlarged post-cloacal scales in males.[8]

The males of many species are overall more brightly colored, while females are duller, more cryptic, and sometimes their upperparts have striped or lined patterns that serve to break up the outline of the anole.[8] In general, the juvenile colors and pattern resemble those of the adult female.[75] The dewlap tends to be more colorful in males,[8] with clear differences being common among anoles of the mainland of the Americas and comparatively rarer in the Caribbean species.[114]

Territoriality and breeding

Puerto Rican crested anole
exhibiting push-up behavior
Two male
Carolina anoles
fighting over territory at the top of a fence post

Almost all anole species are highly territorial, at least the males, but a few exceptions do exist, including the rock-living

grass anole where dominant males accept subordinant non-territorial males within their territory.[115] Territorial anoles will fan their dewlap, bob their head, perform "push-ups", raise their crest and do a wide range of other behaviors to scare away potential competitors.[67][116][117] If this does not scare off the intruder, a fight proceeds in which the two anoles attempt to bite each other. During fights some species of anoles are known to vocalize.[118] In addition to the behaviors indicating dominance, anoles may move their head up and down in a head-nod display (not to be confused with the head-bob display where entire frontal part of body is moved through "push-ups"), which is a submissive sign.[117][119][120][121] Females maintain a feeding territory. Males maintain a larger breeding territory, which overlaps with the feeding territory of one or several females.[8][116] The home range is generally larger in males than in females, and larger in large anole species than in smaller.[49] In a very small species like the Bahoruco long-snouted anole the home range can be as little is about 1.5 m2 (16 sq ft) and 2.3 m2 (25 sq ft) in a female and male,[99] compared to a large species like the knight anole where they average about 630 m2 (6,800 sq ft) and 650 m2 (7,000 sq ft).[49] If removed from its territory an anole will usually be able to find its way back home in a relatively short time, but exactly how they do this is unclear.[122] Generally being highly solitary animals, anoles will only infrequently congregate, but in colder regions individuals may rest adjacent to each other in groups during the winter.[34][123]

In addition to differences in the appearance of the dewlap, the frequency of the dewlap opening/closing and the frequency and amplitude of the head bobbing differ between species, allowing them to separate each other.[30][124] Territoriality is typically aimed at other individuals of the same species, but in a few cases it is also directed towards other anoles, as can be seen between the crested and Cook's anoles. Unlike most anoles with widely overlapping ranges, these two inhabit very similar niches and directly compete for resources.[125]

Mating knight anoles. The male has turned dark from the normal green color. The whitish-gray patches are old skin that is in the process of being shed

The breeding period varies. In species or populations living in highly seasonal regions it is generally relatively short, typically during the wet season. It is prolonged, often even year-round, in species or populations living in regions with less distinct seasons.

bromeliad, tree hole or rock crevice.[7][16][69] A small number of species lay their eggs together, forming a communal nest.[16][133][134] Among these is the unusual Cuban cave anole where as many as 25 eggs may be glued together in a small cavity on the side of a cave wall.[16] A nest that contained eggs from the bay anole and the geckos Sphaerodactylus armasi and Tarentola crombiei represents the only known multi-species communal nest for an anole and the only known communal nest involving more than one family of lizard.[135] Although typically only laying a single egg per time (clutch), females of many anole species can lay an egg every five days to four weeks.[7][8] Some only have a single clutch per year, while other species may have as many as 20 on average. Depending on species, anole eggs hatch after about 30–70 days.[15]

Feeding

Anoles are opportunistic feeders, and may attempt to eat any attractive meal that is of the right size. They primarily feed on insects like

cannibalism of their own) and frogs.[49][139][140] The slow-moving Cuban false chameleon anoles ("Chamaeleolis") are specialized snail-eaters,[17][141] and a few semi-aquatic species like the Cuban stream anole may catch prey in water such as shrimp and small fish.[7] In some species the average prey-size varies with the individual anole's size, age and sex, with juvenile anoles eating the smallest prey, adult females taking intermediate-sized prey and adult males the largest prey.[109] In other species there are no clear differences in the preferred prey size, regardless of an individual's size and sex.[138]

Hunting is done by sight,

sit-and-wait predators that pounce on prey when it gets close to the anole.[8][92] Anoles have numerous small, sharp and pointed teeth that allow them to efficiently grab their prey. They are heterodonts with each tooth in the frontal half of the jaw having a single tip (unicuspid) and each in the rear half having three tips (tricuspid); one in the middle and a smaller behind and in front of it.[143][144] Unusually, the Cuban false chameleon anoles have enlarged and blunt, molar-like teeth in the rear part of their jaw, allowing them to crush the shells of their snail prey.[17][141]

In addition to animal prey, many anole species will take plant material, notably fruits, flowers and

hummingbird feeders.[112] Anoles are vulnerable to drying out and generally need access to water for drinking,[8] like dew or rain on leaves,[147] although some species are less susceptible to water loss than others and are able to live in relatively arid places.[125][148]

Predator avoidance and deterrence

The flat Andes anole avoids detection by moving slowly and it will often coordinate its movements with the wind[149]

A wide range of animals will eat anoles, such as large spiders, centipedes, predatory katydids, snakes, large frogs, lizards, birds, monkeys, bats and carnivoran mammals.[7][150] At least in part of their range, snakes may be the most significant predator of anoles.[8] For example, the Caribbean Alsophis and Borikenophis racers, and the Mexican, Central American and South American Oxybelis vine snakes feed mostly on lizards like anoles.[151][152] Some reptile-eating snakes have a specialized venom that has little effect on humans, but it rapidly kills an anole.[153] On some Caribbean Islands anoles make up as much as 40–75% of the diet of American kestrels.[71] Large anoles may eat smaller individuals of other anole species and cannibalism—eating smaller individuals of their own species—is also widespread.[139] There is a documented case of a small anole being captured and killed by an outside potted Venus flytrap plant.[154]

Anoles mainly detect potential enemies by sight, but their hearing range also closely matches the typical vocal range of birds. If hearing a predatory bird, like a kestrel or hawk, they increase their vigilance. When hearing a non-predatory bird little or no change happens.

similar to basilisks.[56][159][160] However, the anoles lack the specialized toe fringes that helps basilisks when doing this.[160]

A Barbados anole with a partially regenerated tail

Anole tails often have the ability to break off at special segments, which is known as autotomy. The tail continues to wriggle for a period after detaching, attracting the attention of the predator and commonly allowing the anole to escape.[62] The tail is regenerated, but it takes more than two months to complete this process.[10][161] About two dozen anoles, including almost all members of the latifrons species group, all in the chamaeleonidae species group and the La Palma anole, do not have the ability to autotomize the tail.[2]

If caught or cornered, anoles will bite in self-defense.

Puerto Rican crested anoles escape from more than 13 of all attacks by Puerto Rican racer snakes.[163] Some species of anoles will vocalize (typically growls, chirps or squeals) when caught.[118]

Evolution

The evolution of anoles has been widely studied, and they have been described as a "textbook example of adaptive radiation and convergent evolution".[164] Especially the widespread convergent evolution seen in anoles living in the Greater Antilles has attracted the attention of scientists, and resulted in comparisons with the Darwin's finches of the Galápagos Islands, lemurs of Madagascar and cichlid fish in the African Great Lakes.[165][166][167]

Ecomorphs and origin

Jamaican giant and western giant anole (from Cuba) are all crown giant ecomorphs
, but not closely related

On each major Greater Antillean Island (Cuba, Hispaniola, Puerto Rico and

immunological studies indicate that anoles originated 40–66 million years ago, first inhabitant Central or South America, and then came to the Caribbean (initially likely Cuba or Hispaniola).[7][30][170] A more recent phylogenetic study, published in 2012, indicated that anoles originated in South America and diverged from other reptiles far earlier, about 95 million years ago.[2][3] While a South American origin has been generally accepted, the very high age has been controversial and other studies published in 2011–2014 arrived at a lower age, estimating that anoles diverged from other reptiles 23–75, 53–72 or 81–83 million years ago,[164] while a comprehensive study from 2017 estimated about 46–65 million years ago.[3] This indicates that early anoles arrived on the Greater Antillean Islands in the Caribbean from the mainland of the Americas via rafting rather than overland via ancient (now submerged) land bridges.[164] After arriving in the Caribbean they diversified into several new groups and one of these, the Norops lineage, later made its way back to mainland of the Americas.[2][30]

Species and adaptability

reproductively isolated[171]
nominate below), but studies indicate the subspecies are invalid today[86][87]

intergrade, something that possibly has been enhanced by habitat changes by humans (allowing populations to easier come into contact with each other) and translocations of individuals. This indicates that the subspecies are invalid today.[86][87][173] Genetic studies confirm that strong assortative mating between the different Guadeloupean anole populations does not exist, despite their distinct differences in appearance and them having separated about 650,000 years ago (confidence interval starting at 351,000 years).[174] Hybridization between different anole species has rarely been documented.[7][30][171]

In contrast to this, anoles can change rapidly in response to changes, which is an example of

guppies and Peromyscus beach mice.[65][167] In studies of brown anoles introduced to Florida it has been seen that they can become longer-legged in a single generation when living with the predatory, ground-living northern curly-tailed lizard (shorter-legged anoles are slower and easier to catch for the curly-tailed lizard). Over a longer period, however, their legs become shorter, which are better suited for perching on smaller branches higher off the ground, out of reach for the curly-tailed lizard.[65] When brown anoles are introduced to small islands with low vegetation, their legs become shorter, better suited for rapidly moving among the shrunken shrubbery to catch insects and avoid predatory birds.[175] Furthermore, in a study where brown anoles were introduced to seven small, anole-free Bahaman islands (anoles had disappeared because of Hurricane Frances), it was seen that—although all populations became shorter-legged within a few years—this was proportional to the leg-size of the founders. In other words: The few founder brown anoles introduced to one island were shorter-legged than the few introduced to another. Both populations became shorter-legged over time, but the first remained shorter-legged than the second. This is an example of the founder effect.[175][176] Similarly, when brown anoles were introduced to Florida, the native Carolina (or green) anoles moved to higher perches and gained larger toe pads better suited for those perches. This adaptation occurred in just 20 generations.[177] Anoles are also adapting to life with humans: Puerto Rican crested anoles living in cities have developed more adhesive lamellae on their toe pads than ones living in forests, reflecting the need for being able to climb very smooth surfaces like windows in the former habitat.[61] In contrast to these fast changes, anole's adaptability to temperature changes has traditionally been considered relatively minor. Nevertheless, when Puerto Rican crested anoles in Florida (where introduced in the 1970s) were compared to the original, native population in Puerto Rico, it was discovered that the former had become adapted to colder temperatures, by about 3 °C (5.4 °F).[178] An even faster adaption was observed in Carolina anoles from Texas during the unusually cold winter of 2013–2014. Carolina anoles living in central Texas and further north were already adapted to relatively cold temperatures, but those of southern Texas were not. However, after the winter of 2013–2014, the cold tolerance of the southern Texan populations had increased by as much as 1.5 °C (2.7 °F) and their genomic profiles had changed to more closely resemble the more northerly living Carolina anoles.[179][180]

Taxonomy

New anole species are regularly described, like Anolis (Dactyloa) kunayalae from Panama in 2007[181]

The name for this group of lizards originates from the

Carib anoli. It was modified and used in French Creole, and then transferred to English via the genus name Anolis, coined by French zoologist François Marie Daudin in 1802.[182][183]

Several

junior synonym of Dactyloidae (Fitzinger, 1843).[185]

More than 425 species of true anoles are known.

New species are regularly described, including 12 in 2016 alone.[181] Most of the recent discoveries have been from the mainland of the Americas, with fewer new anoles described from the comparatively better-known Caribbean Islands.[4][31]

Genera

phylogenetic position of the Guantanamo (shown) and cave anoles is not entirely clear. They are tentatively included as the lucius group in Anolis, but might warrant separation as genus Gekkoanolis[2]

Traditionally, all the true anoles were included in the genus Anolis and some continue to use this treatment,

monophyletic group, but the "alpha anoles" are not. Furthermore, the genus splits proposed in 1976 and 1986 caused problems, as the narrowly defined Anolis was not monophyletic.[189][190] In 2004, a major review based on several types of data (both molecular and morphological) revealed several groups and partially confirmed the genetic results from 1998 to 1999. No major changes were proposed and all anoles were maintained in a broadly defined Anolis.[191] Two recent studies, primarily genetic and published in 2012 and 2017, confirmed several of the groups found in earlier studies, but rejected others. They found that the anoles fall into eight primary clades. Some of these can be further subdivided: For example, Chamaeleolis (from Cuba) is one of two subclades within Xiphosurus and it is sometimes considered a valid genus (in which case Xiphosurus is restricted to Hispaniola, Puerto Rico and nearby smaller islands).[2][3] In contrast, the earlier proposed genus Phenacosaurus (from the Andes and tepui highlands in northwestern South America) is now included in Dactyloa.[2] The phylogenetic position of most species is clear, but in a few the available evidence is conflicting and/or labelled with considerable statistic uncertainty.[2][3]

The relationship of Dactyloidae can be described with a cladogram.[2][3] Whether the eight groups are best recognized as separate genera or only as clades within a single genus, Anolis, is disputed.[2][3][192][193][194] A few families between Polychrotidae and Corytophanidae+Dactyloidae are not shown:[5][6][11]

Polychrotidae (bush anoles)

Corytophanidae (basilisks and relatives)

Dactyloidae (anoles)

Relationship with humans

Anoles are model organisms often studied in fields such as ecology, behavior, physiology and evolution.[3][7][17] The Carolina (or green) anole is the most-studied anole species, with the earliest dedicated studies being more than 100 years old, from the late 1800s.[97] The Carolina anole was the first reptile where the entire genome was sequenced.[195][196]

Anoles are harmless to humans, but if caught or cornered they will bite in self-defense. As typical of animals, the bite force is strongly correlated to the size of the anole.[197] It causes little pain in the smaller anoles which usually do not break the skin.[162] Large species have relatively strong jaws lined with small, sharp teeth, and their bite can be painful and result in a superficial wound, but it is still essentially harmless.[18][198][199]

Some anole species are commonly kept in captivity as pets and especially the Carolina (or green) anole is often described as a good "beginner's reptile", but it too requires specialized care.[18][147][200]

Anoles can function as a

pest insects that may harm humans or plants. Anole abundances can be considerably higher in diversified agroecosystems (multiple different plant types) than high-intensity agroecosystems (typically only one or very few plant types, and regular use of agrochemicals), making the former particularly suitable for this type of pest control.[19] However, because of their potential of becoming invasive species, releasing anoles outside their native range is strongly discouraged and often illegal, even if the species occurs elsewhere in a country (for example, it is illegal to release Carolina anoles in California, as its native range is in the Southeastern United States).[201][202]

Conservation

The blue anole is threatened by introduced predators[203][204]
Saban anole is restricted to the 13 km2 (5 sq mi) Saba Island where it is common, but its tiny range makes it vulnerable[205]

The willingness of many anoles of living close to humans in heavily altered habitats have made them common.

captive breeding program to ensure its survival.[214][215]

Nevertheless, anoles overall do not appear to have experienced the widespread

Morne Constant anole, do not grow as large today as they once did.[216]

Species restricted to a specific habitat in relatively remote regions, infrequently visited by biologists looking for reptiles, are often virtually unknown and rarely recorded.[219] In a review in 2017, it was found that 15 anole species only were known from their holotype.[207] These may truly be rare and seriously threatened, as the proboscis anole, a species that only was known from a single specimen collected in 1953 until it was rediscovered in cloud forests of Ecuador in 2004.[220][221] In others with few records, like the Neblina anole, this is not the case. It was initially known from six 1980s specimens from the remote Neblina highlands in Venezuela, but when the Brazilian part of these highlands were visited in 2017 it was discovered that the species was locally abundant.[222] Some species are easily overlooked, even if common. For example, if searching for Orces' Andes anole during the night when asleep they can be fairly easy to find, but if visiting the same location during the day it can be very difficult to find any.[223]

As introduced species

Puerto Rican crested anole[214][215]

When introduced to regions outside their native range by humans, anoles may become invasive and represent a serious threat to small local animals. Such introductions may happen by mistake (for example, as "stowaways" on garden plants) or deliberately (as predators introduced to combat insects or release of pet anoles people no longer want).[137][202][224]

In the contiguous United States, the Carolina anole has been introduced to California, the brown anole has been introduced to the Gulf Coast states and California, and the knight,

Bermuda rock lizard.[21][224] This problem has not been reported for the Leach's and Barbados anoles, the other species introduced to Bermuda.[237] In the Cayman Islands the endemic Cayman blue-throated anole has moved to higher perched in places where the introduced brown anole is present (similar to the Carolina anole in places where brown anoles are present).[230][238] Outside the Americas, the brown anole has been introduced to Hawaii, Tenerife, Singapore and Taiwan,[137] and it is able to change ant communities on the last of these islands.[239]

See also

References

  1. ^ .
  2. ^ . Retrieved 19 May 2013.
  3. ^ .
  4. ^ .
  5. ^ a b c Losos, J. (5 June 2013). "Lizard Super-Phylogeny Contains 4,000+ Species". Anole Annals. Retrieved 22 April 2018.
  6. ^
    PMID 21787873
    .
  7. ^ .
  8. ^ .
  9. ^ a b Naish, D. (5 May 2011). "Lamellae, scansor pads, setae and adhesion… and the secondary loss of all of these things (gekkotans part IV)". Retrieved 21 March 2018.
  10. ^
    S2CID 1494221
    .
  11. ^ .
  12. .
  13. ^ a b "Nonnatives - Cuban Green Anole". Florida Fish and Wildlife Conservation Commission. Archived from the original on 12 November 2016. Retrieved 20 March 2018.
  14. ^ .
  15. ^ a b c Durso, A. (27 June 2013). "Fill In The Blank: Obscure Anole Life History Traits". Anole Annals. Retrieved 22 April 2018.
  16. ^
    S2CID 86339367
    .
  17. ^ .
  18. ^ .
  19. ^ .
  20. ^ .
  21. ^ .
  22. ^ a b Hedges, B. (30 May 2017). "Cuba". CaribHerp. Retrieved 20 March 2018.
  23. ^ .
  24. ^ Hedges, B. (30 May 2017). "Hispaniola". CaribHerp. Retrieved 20 March 2018.
  25. ^ Gray; Meza-Lázaro; Poe; Nieto-Montes de Oca (2016). "A new species of semiaquatic Anolis (Squamata: Dactyloidae) from Oaxaca and Veracruz, Mexico". Herpetological Journal. 26: 253–262.
  26. .
  27. ^ Salvador Mendoza, J. (29 February 2012). "A View Of The Anole Diversity Of The Colombian Caribbean Coast". Anole Annals. Retrieved 22 April 2018.
  28. ^ Antonio de Freitas; Coutinho Machado; Mendes Venâncio; Pereira; de França; Veríssimo (2013). "First record for Brazil of the Odd Anole lizard, Anolis dissimilis Williams, 1965 (Squamata: Polychrotidae) with notes on coloration". Herpetology Notes. 6: 383–385.
  29. ^ Hedges, B. (30 May 2017). "Lesser Antilles". CaribHerp. Retrieved 20 March 2018.
  30. ^ .
  31. ^ a b Ayala-Varela; Troya-Rodríguez; Talero-Rodríguez; Torres-Carvajal (2014). "A new Andean anole species of the Dactyloa clade (Squamata: Iguanidae) from western Ecuador" (PDF). Amphibian & Reptile Conservation. 8 (1): 8–24.
  32. ^ a b Hedges, B. (30 May 2017). "Puerto Rico–Virgin Islands". CaribHerp. Retrieved 20 March 2018.
  33. ^ a b "Green Anole". New Hampshire PBS. 2017. Retrieved 20 April 2018.
  34. ^ a b Distler; Dorcas; Gibbons; Kandl; Russel (1998). "Winter Mortality in the Green Anole, Anolis carolinensis (Lacertilia: Polychridae)". Brimleyana. 25: 140–143.
  35. ^ a b c "Nonnatives - Brown Anole". Florida Fish and Wildlife Conservation Commission. Retrieved 18 March 2018.
  36. ^ a b "Brown Anole - Anolis sagrei". California Herps. Retrieved 18 March 2018.
  37. S2CID 214263657
    .
  38. ^ Scarpetta; Gray; Nieto-Montes de Oca; Castañeda; Herrel; Losos; Luna-Reyes; Jiménez Lang; Poe (2015). "Morphology and ecology of the Mexican cave anole Anolis alvarezdeltoroi". Mesoamerican Herpetology. 2: 260–268.
  39. .
  40. .
  41. .
  42. ^ .
  43. ^ .
  44. .
  45. ^ a b Losos, J. (12 March 2013). "Scientists at Work: Quest for a little-known suburban lizard". New York Times. Retrieved 28 March 2018.
  46. ^ .
  47. ^ Bleisch, M. "Anolis ophiolepis" (in German). saumfinger.de. Retrieved 18 April 2018.
  48. ^ .
  49. ^ a b c d Richards, P.M.; K.E. Nicholson (2011). "Home-range size and overlap within an introduced population of the Cuban Knight Anole, Anolis equestris (Squamata: Iguanidae)". Phyllomedusa. 10 (1): 65–73.
  50. S2CID 4971493
    .
  51. .
  52. ^ Bradley K. (2011). "Alien Lizard – Care for the cryptic Cuban false chameleon". Reptiles. 2011 (April): 32–41.
  53. ^ a b c Hedges; Thomas (1989). "A new species of Anolis (Sauria: Iguanidae) from Sierra de Neiba, Hispaniola". Herpetologica. 45 (3): 330–336.
  54. S2CID 34632653
    .
  55. .
  56. ^ .
  57. .
  58. ^ .
  59. .
  60. .
  61. ^ a b Beans, C. (26 April 2016). "Lizard gets to grips with city life by evolving stickier feet". New Scientist. Retrieved 30 March 2018.
  62. ^ a b c "Anole Facts". anolebook.com. 2006. Archived from the original on 19 August 2017. Retrieved 22 April 2018.
  63. PMID 16506231
    .
  64. ^ Losos, J. (2 April 2013). "Anole Beach Party In Venezuela". Anole Annals. Retrieved 22 April 2018.
  65. ^ a b c Munoz, Martha (November 16, 2012). "Physiological Adaptation On Ecological Timescales – New Research by Alex Gunderson and Manuel Leal". Anole Annals. Retrieved November 18, 2012.
  66. S2CID 54688798
    .
  67. ^ a b c Kolbe; Feeley; Battles; Stroud, Field Identification Guide for the Anole Lizards of Miami (PDF), retrieved 19 April 2018
  68. S2CID 8058265
    .
  69. ^ .
  70. ^ Lambert, S. (11 April 2014). "Spotlight on Cuban Anoles, Part II: Anolis lucius". Anole Annals. Retrieved 22 April 2018.
  71. ^
    S2CID 53682041
    .
  72. .
  73. ^ Losos, J. (7 December 2017). "Night Time Activity by the Brown Anole in Guatemala". Anole Annals. Retrieved 22 April 2018.
  74. ^ Kamath, A. (25 June 2016). "Nocturnal Behavior in the Green Anole". Anole Annals. Retrieved 22 April 2018.
  75. ^
    S2CID 4839265
    .
  76. ^ .
  77. .
  78. ^ Losos, J. (24 February 2012). "New Study on Color Change In Green Anoles". Anole Annals. Retrieved 22 April 2018.
  79. .
  80. .
  81. ^ .
  82. ^ "Nonnatives - Bark Anole". Florida Fish and Wildlife Conservation Commission. Archived from the original on 15 October 2016. Retrieved 29 March 2018.
  83. .
  84. ^ .
  85. .
  86. ^ a b c Legreneur, P. (7 April 2012). "The Anoles Of Guadeloupe". Anole Annals. Retrieved 22 April 2018.
  87. ^ a b c Legreneur, P. (11 September 2013). "United Colors Of Guadeloupe Anoles". Anole Annals. Retrieved 22 April 2018.
  88. S2CID 205189765
    .
  89. ^ Losos, J. (30 May 2014). "Green Anole Color Morphs". Anole Annals. Retrieved 22 April 2018.
  90. ^
    PMID 17342208
    .
  91. ^ .
  92. ^ a b c Crawford, C. (2011). "Anolis carolinensis – Green anole". Animal Diversity Web. Retrieved 20 March 2018.
  93. ^ Schwartz, A. (1968). "Geographic Variation in Anolis distichus Cope (Lacertilia, Iguanidae) in the Bahama Islands and Hispaniola". Bulletin of the Museum of Comparative Zoology at Harvard College. 137: 255–309.
  94. ^
    S2CID 4991633
    .
  95. ^ .
  96. .
  97. ^ .
  98. ^ Landestoy, M. (25 May 2013). "A Little Giant's Dewlap… Why Do They Need One?". Anole Annals. Retrieved 22 April 2018.
  99. ^
    PMID 14756155
    .
  100. ^ Tokarz, Richard R. (2005). "Importance of Dewlap Display in Male Mating Success in Free-Ranging Brown Anoles". Bio One.
  101. S2CID 25153816
    .
  102. .
  103. .
  104. .
  105. .
  106. ^ .
  107. ^ Armstead; Ayala-Varela; Torres-Carvajal; Ryan; Poe (2017). "Systematics and ecology of Anolis biporcatus (Squamata: Iguanidae)". Salamandra. 52 (2): 285–293.
  108. ^
    S2CID 49305
    .
  109. ^ .
  110. .
  111. .
  112. ^ .
  113. .
  114. ^ Losos, J. (20 January 2012). "Battle of the Sexes: When Dewlaps Differ". Anole Annals. Retrieved 22 April 2018.
  115. JSTOR 1564352
    .
  116. ^ .
  117. ^ .
  118. ^ .
  119. .
  120. ^ Crews D. (1975). "Inter- and intraindividual variation in display patterns in the lizard, Anolis carolinensis". Herpetologica. 31 (1): 37–47.
  121. S2CID 53193816
    .
  122. ^ Gorman, J. (6 July 2015). "Mystery of the Lizards That Know the Way Home". New York Times. Retrieved 19 April 2018.
  123. .
  124. .
  125. ^ .
  126. ^ Muñoz, M. (8 January 2018). "SICB 2018: Revisiting the Fitch-Hillis Hypothesis in Mexican Anoles". Anole Annals. Retrieved 22 April 2018.
  127. ^ a b Hailey, BA (30 March 2017). "Anolis cristatellus (Puerto Rican crested anole)". animals.mom.me. Retrieved 22 March 2018.
  128. ^ Kahrl, A. (16 January 2016). "SICB 2016: Do Seasonal Changes in Developmental Temperature Have Season-Specific Fitness Consequences?". Anole Annals. Retrieved 22 April 2018.
  129. ^ a b Team, Ben. "Anole lizard: How long until the egg hatches?". animals.mom.me. Retrieved 17 March 2018.
  130. ^
    S2CID 3617491
    .
  131. ^ Calsbeek; Bonneaud; Prabhu; Manoukis; Smith (2007). "Multiple paternity and sperm storage lead to increased genetic diversity in Anolis lizards". Evolutionary Ecology Research. 9 (3): 495–503.
  132. ^ Walls, J.G: Breeding Anoles. Reptile Magazine. Retrieved 16 March 2018.
  133. ^ Rand, A.S. (1967). "Communal Egg Laying in Anoline Lizards". Herpetologica. 23 (3): 227–230.
  134. .
  135. ^ Alfonso; Charruau; Fajardo; Estrada (2012). "Interspecific communal oviposition and reproduction of three lizard species in Southeastern Cuba". Herpetology Notes. 5: 73–77.
  136. ^ Losos, Jonathan (May 10, 2011). "They Don't Eat Butterflies, Do They?". Anole Annals. Retrieved November 19, 2012.
  137. ^ a b c Tan, H.H.; K.K.P. Lim (2012). "Recent introduction of the brown anole Norops sagrei (Reptilia: Squamata: Dactyloidae) to Singapore". Nature in Singapore. 5: 359–362.
  138. ^
    S2CID 73529400
    .
  139. ^ a b Powell, R.; A. Watkins (2014). "First Report of Cannibalism in the Saba Anole (Anolis sabanus), with a Review of Cannibalism in West Indian Anoles". IRCF Reptiles & Amphibians. 21 (4): 137.
  140. ^ Torres, J.; M. Acosta (2014). "Predation attempt by Anolis porcatus (Sauria, Dactyloidae) on Mus musculus (Rodentia, Muridae)". Herpetology Notes. 7: 525–526.
  141. ^ a b Holáňová, Rehák, and Frynta (2012). Anolis sierramaestrae sp. nov. (Squamata: Polychrotidae) of the "chamaeleolis" species group from Eastern Cuba. Acta Soc. Zool. Bohem. 76: 45–52.
  142. JSTOR 1441527
    .
  143. .
  144. .
  145. .
  146. ^ .
  147. ^ a b Purser, P. (10 April 2014). "Green Anole Care Sheet". Mongabay. Retrieved 22 March 2018.
  148. .
  149. ^ a b Losos, J. (19 March 2013). "Scientists at Work: Lizard Olympics". New York Times. Retrieved 28 March 2018.
  150. .
  151. ^ Henderson, R.W.; Sajdak, R.A. (1996). "Diets of West Indian racers (Colubridae: Alsophis): Composition and biogeographic implications". In Powell, R.; Henderson, R.W. (eds.). Contributions to West Indian Herpetology: A Tribute to Albert Schwartz. Vol. 12. Society for the Study of Amphibians and Reptiles, Contributions to Herpetology. pp. 327–338.
  152. S2CID 198149605
    .
  153. .
  154. ^ McNeil, J. (2009). "The Venusian Lizard Trap". Carnivorous Plant Newsletter. 38 (2): 54.
  155. .
  156. .
  157. .
  158. ^ Stroud, J.T. (27 June 2017). "Evolution 2017: It Doesn't Pay to Be Risky When Predators Are About". Anole Annals. Retrieved 20 April 2018.
  159. S2CID 234495677
    .
  160. ^ .
  161. ^ Howard, J. (21 August 2014). "Scientists Have Figured Out How Lizards Regrow Their Tails, And That's Good News For Humans". Huffington Post. Retrieved 16 March 2018.
  162. ^ a b Losin, N. (19 September 2011). "Video from the Field: Bite Force!". National Geographic. Archived from the original on March 30, 2018. Retrieved 29 March 2018.
  163. JSTOR 1446810
    .
  164. ^ .
  165. ^ a b c Yong, E. (18 July 2013). "Lookalike Lizards and the Predictability of Evolution". National Geographic. Archived from the original on July 21, 2013. Retrieved 27 March 2018.
  166. PMID 18713721
    .
  167. ^ .
  168. ^ Barrat, J. (27 July 2015). "Trapped in Amber: Ancient fossils reveal remarkable stability of Caribbean lizard communities". Smithsonian Insider. Retrieved 27 March 2018.
  169. ^
    PMID 26216976
    .
  170. ^ Subbaraman, N. (18 July 2013). "Caribbean lizards show that evolution repeats itself". NBC News. Retrieved 28 March 2018.
  171. ^
    PMID 20442860
    .
  172. ^ "How Important Is Geographical Isolation in Speciation?". ScienceDaily. 1 May 2010. Retrieved 6 May 2010.
  173. .
  174. ^ a b Vastag, B. (4 February 2014). "Castaway lizards put evolution to the test". Washington Post. Retrieved 27 March 2018.
  175. S2CID 12374679
    .
  176. .
  177. .
  178. .
  179. ^ Bolotnikova, M.N. (3 August 2017). "Extreme-weather Evolution". Harvard Magazine. Retrieved 30 March 2018.
  180. ^
    The Reptile Database
    . Retrieved 15 March 2018.
  181. .
  182. ^ Daudin, F.M. (1802). Histoire Naturelle, Générale et Particulière des Reptiles. F. Dufart, Paris.
  183. .
  184. ^ Losos, J. (3 August 2011). "New Multilocus Phylogeny Confirms that Polychrus is Not Sister to Anolis". Anole Annals. Retrieved 22 April 2018.
  185. ^ Williams, E.E. (1976). "West Indian Anoles: a taxonomic and evolutionary summary. 1. Introduction and a species list". Breviora. 440: 1–21.
  186. ^ Williams, E.E. (1976). "South American anoles: the species groups". Papéis Avulsos de Zoologia. 29: 259–268.
  187. JSTOR 2413112
    .
  188. .
  189. .
  190. .
  191. .
  192. .
  193. ^ .
  194. ^ "Anole Genome Project". Broad Institute. 15 May 2008. Retrieved 17 March 2018.
  195. PMID 21881562
    .
  196. .
  197. ^ Camposano; Krysko; Enge; Donlan; Granatosky (2008). "The Knight Anole (Anolis equestris) in Florida". Iguana. 15 (4): 212–219.
  198. ^ "Cuban Knight Anole". butterflies.heuristron.net. Archived from the original on 22 April 2018. Retrieved 21 April 2018.
  199. ^ McLeod, L. (18 September 2017). "Do Green Anoles Make Good Pets?". The Spruce. Retrieved 22 March 2018.
  200. ^ a b c "Green Anole - Anolis carolinensis". California Herps. Retrieved 18 March 2018.
  201. ^ a b Kaplan, M. (1997). "Releasing Captive Reptiles and Amphibians". anapsid.org. Retrieved 22 March 2018.
  202. ^ Butler, T. (7 March 2007). "World's only blue lizard heads toward extinction". Mongabay. Retrieved 20 March 2018.
  203. . Retrieved 5 June 2022.
  204. ^ "Saban Anole". Dutch Caribbean Nature Alliance. Retrieved 20 March 2018.
  205. S2CID 87639275
    .
  206. ^ .
  207. IUCN
    . 2018. Retrieved 10 April 2018.
  208. .
  209. ^ Townsend; Wilson; Talley; Fraser; Plenderleith; Hughes (2006). "Additions to the herpetofauna of Parque Nacional El Cusuco, Honduras". Herpetological Bulletin. 96: 29–39.
  210. .
  211. ^ Landestoy, M. (6 October 2016). "How a Well-Hidden Giant Got Uncovered: the Discovery of a New Anole Species from Hispaniola". Anole Annals. Retrieved 22 April 2018.
  212. PMID 18180174
    .
  213. ^ .
  214. ^ .
  215. ^ a b Bochaton, B. (3 July 2017). "Subfossil Record Reveals Human Impacts on a Lesser Antillean Endemic Anole". Anole Annals. Retrieved 22 April 2018.
  216. .
  217. ^ Gaa Ojeda Kessler, A. (2010). "Status of the Culebra Island giant anole (Anolis roosevelti)" (PDF). Herpetological Conservation and Biology. 5 (2): 223–232.
  218. ^ Prates, I. (14 May 2017). "Legendary Brazilian Anoles Rediscovered". Anole Annals. Retrieved 22 April 2018.
  219. ^ Almendariz, A. C.; Vogt, C. (2007). "Anolis proboscis (Squamata: Polychrotidae), Una lagartija rara pero no extinta" (PDF). Politécnica. 27 (4): Biología 7 133–135.
  220. .
  221. ^ Prates, I. (11 December 2017). "Notes on the Neblina tepui Anole (Anolis neblininus), Discovered in Brazil". Anole Annals. Retrieved 22 April 2018.
  222. ^ Losos, J. (6 August 2011). "The Principle of Unsympathetic Magic Strikes (Yet) Again II". Anole Annals. Retrieved 22 April 2018.
  223. ^ .
  224. ^ "Nonnatives - Barbados Anole". Florida Fish and Wildlife Conservation Commission. Retrieved 20 March 2018.
  225. ^ "Nonnatives - Marie Gallant Sail-tailed Anole". Florida Fish and Wildlife Conservation Commission. Archived from the original on 20 March 2018. Retrieved 20 March 2018.
  226. .
  227. ^ Kamath, A. (15 September 2017). "Are Brown Anoles in Florida Really Driving Green Anoles to Extinction III: A Post-Irma Update". Anole Annals. Retrieved 22 April 2018.
  228. ^ Lomax, J.N. (3 December 2015). "The Green Anole, Your Resident Backyard Lizard, Is Being Pushed Out By Its Uglier Cousin". Texas Monthly. Retrieved 20 March 2018.
  229. ^ .
  230. .
  231. ^ .
  232. ^ "Blue Japanese butterfly endemic to Ogasawara Islands feared extinct". The Japan Times. 28 August 2020. Retrieved 5 June 2022.
  233. .
  234. .
  235. .
  236. .
  237. .
  238. .

External links