Dakin–West reaction

Source: Wikipedia, the free encyclopedia.

The Dakin–West reaction is a

amino-acid into a keto-amide using an acid anhydride and a base, typically pyridine.[1][2][3][4][5] It is named for Henry Drysdale Dakin (1880–1952) and Randolph West (1890–1949). In 2016 Schreiner and coworkers reported the first asymmetric variant of this reaction employing short oligopeptides as catalysts.[6]

The Dakin–West reaction
The Dakin–West reaction

With pyridine as a base and

4-dimethylaminopyridine (DMAP) as a catalyst, the reaction can take place at room temperature.[8]

With some acids, this reaction can take place even in the absence of an α-amino group.

This reaction should not be confused with the

Dakin reaction
.

Reaction mechanism

The reaction mechanism involves the acylation and activation of the acid 1 to the mixed anhydride 3. The amide will serve as a nucleophile for the cyclization forming the

azlactone 4. Deprotonation and acylation of the azlactone forms the key carbon-carbon bond. Subsequent ring-opening of 6 and decarboxylation give the final keto-amide product.[9][10]

The mechanism of the Dakin-West reaction
The mechanism of the Dakin-West reaction

General ketone synthesis

Modern variations on the Dakin–West reaction permit many enolizable carboxylic acids – not merely amino acids – to be converted to their corresponding methyl ketones. For example, β-aryl carboxylic acids can be efficiently converted to β-aryl ketones by treatment of an

N-methylimidazole. This reactivity is attributed in part to generation of acetylimidazolium, a powerful cationic acetylating agent, in situ.[11]

Modified Dakin-West reaction
Modified Dakin-West reaction

See also

References