David Bohm

Source: Wikipedia, the free encyclopedia.

David Bohm
Robert Oppenheimer
Doctoral students

David Joseph Bohm FRS[1] (/bm/; 20 December 1917 – 27 October 1992) was an American scientist who has been described as one of the most significant theoretical physicists of the 20th century[2] and who contributed unorthodox ideas to quantum theory, neuropsychology and the philosophy of mind. Among his many contributions to physics is his causal and deterministic interpretation of quantum theory known as De Broglie–Bohm theory.

Bohm advanced the view that quantum physics meant that the old

Cartesian model of reality—that there are two kinds of substance, the mental and the physical, that somehow interact—was too limited. To complement it, he developed a mathematical and physical theory of "implicate" and "explicate" order.[3] He also believed that the brain, at the cellular level, works according to the mathematics of some quantum effects, and postulated that thought is distributed and non-localised just as quantum entities are.[4] Bohm's main concern was with understanding the nature of reality in general and of consciousness in particular as a coherent whole, which according to Bohm is never static or complete.[5]

Bohm warned of the dangers of rampant reason and technology, advocating instead the need for genuine supportive dialogue, which he claimed could bridge and unify conflicting and troublesome divisions in the social world. In this, his epistemology mirrored his ontology.[6]

Born in the United States, Bohm obtained his Ph.D. under

British citizen. He abandoned Marxism in the wake of the Hungarian Uprising in 1956.[7][8]

Youth and college

Bohm was born in

Radiation Laboratory, where he obtained his doctorate.

Bohm lived in the same neighborhood as some of Oppenheimer's other graduate students (

Work and doctorate

Manhattan Project contributions

During

Brigadier General Leslie Groves, would not approve Bohm's security clearance after seeing evidence of his politics and his close friendship with Weinberg, who had been suspected of espionage
.

During the war, Bohm remained at Berkeley, where he taught physics and conducted research in

PhD in 1943 by an unusual circumstance. According to biographer F. David Peat,[12] "The scattering calculations (of collisions of protons and deuterons) that he had completed proved useful to the Manhattan Project and were immediately classified. Without security clearance, Bohm was denied access to his own work; not only would he be barred from defending his thesis, he was not even allowed to write his own thesis in the first place!" To satisfy the University, Oppenheimer certified that Bohm had successfully completed the research. Bohm later performed theoretical calculations for the Calutrons at the Y-12 facility in Oak Ridge, Tennessee. These calculations were used for the electromagnetic enrichment of uranium for the bomb dropped on Hiroshima
in 1945.

McCarthyism and leaving the United States

After the war, Bohm became an assistant professor at

Fifth Amendment
right to refuse to testify, and he refused to give evidence against his colleagues.

In 1950, Bohm was arrested for refusing to answer the committee's questions. He was acquitted in May 1951, but Princeton had already suspended him. After his acquittal, Bohm's colleagues sought to have him reinstated at Princeton, but Princeton President Harold W. Dodds[13] decided not to renew Bohm's contract. Although Einstein considered appointing him as his research assistant at the Institute, Oppenheimer (who had served as the Institute's president since 1947) "opposed the idea and [...] advised his former student to leave the country".[14] His request to go to the University of Manchester received Einstein's support but was unsuccessful.[15] Bohm then left for Brazil to assume a professorship of physics at the University of São Paulo, at Jayme Tiomno's invitation and on the recommendation of both Einstein and Oppenheimer.

Quantum theory and Bohm diffusion

The Bohmian trajectories for an electron going through the two-slit experiment. A similar pattern was also observed for single photons.[16]

During his early period, Bohm made a number of significant contributions to physics, particularly

relativity theory. As a postgraduate at Berkeley, he developed a theory of plasmas, discovering the electron phenomenon known as Bohm diffusion.[17] His first book, Quantum Theory, published in 1951, was well received by Einstein, among others. But Bohm became dissatisfied with the orthodox interpretation of quantum theory he wrote about in that book. Starting from the realization that the WKB approximation of quantum mechanics leads to deterministic equations and convinced that a mere approximation could not turn a probabilistic theory into a deterministic theory, he doubted the inevitability of the conventional approach to quantum mechanics.[18]

Bohm's aim was not to set out a deterministic, mechanical viewpoint but to show that it was possible to attribute properties to an underlying reality, in contrast to the conventional approach.

hidden variable theory, but he later called it ontological theory, reflecting his view that a stochastic process underlying the phenomena described by his theory might one day be found. Bohm and his colleague Basil Hiley later stated that they had found their own choice of terms of an "interpretation in terms of hidden variables" to be too restrictive, especially since their variables, position, and momentum "are not actually hidden".[20]

Bohm's work and the

local
hidden variable theories; the full consequences of Bell's work are still being investigated.

Brazil

After Bohm's arrival in Brazil on 10 October 1951, the US Consul in

US citizenship; he was able to reclaim it only decades later, in 1986, after pursuing a lawsuit.[22]

At the

Louis De Broglie, in particular, on connections to the hydrodynamics model proposed by Madelung.[23]

Yet the causal theory met much resistance and skepticism, with many physicists holding the Copenhagen interpretation to be the only viable approach to quantum mechanics.[22] Bohm and Vigier both emphasized causality, not determinism.[24] In this context, Bohm proposed a causal approach in which the material world could be represented at an infinite number of levels, with stochastic dynamics at every level.[25]

From 1951 to 1953, Bohm and David Pines published the articles in which they introduced the random phase approximation and proposed the plasmon.[26][27][28]

Bohm and Aharonov form of the EPR paradox

In 1955, Bohm relocated to Israel, where he spent two years working at the

Einstein–Podolsky–Rosen (EPR) paradox, reformulating the original argument in terms of spin.[29] It was that form of the EPR paradox that was discussed by John Stewart Bell in his famous paper of 1964.[30]

Aharonov–Bohm effect

Schematic of double-slit experiment in which Aharonov–Bohm effect can be observed: electrons pass through two slits, interfering at an observation screen, with the interference pattern shifted when a magnetic field B is turned on in the cylindrical solenoid.

In 1957, Bohm relocated to the United Kingdom as a research fellow at the University of Bristol. In 1959, Bohm and Aharonov discovered the Aharonov–Bohm effect, showing how a magnetic field could affect a region of space in which the field had been shielded, but its vector potential did not vanish there. That showed for the first time that the magnetic vector potential, hitherto a mathematical convenience, could have real physical (quantum) effects.

In 1961, Bohm was made professor of theoretical physics at the University of London's Birkbeck College, becoming emeritus in 1987. His collected papers are stored there.[31]

Implicate and explicate order

At Birkbeck College, much of the work of Bohm and

holomovement" for the activity in such orders.[34]

Holonomic model of the brain

In a holographic reconstruction, each region of a photographic plate contains the whole image.

In collaboration with

hologram, in accordance with quantum mathematical principles and the characteristics of wave patterns.[35]

Consciousness and thought

In addition to his scientific work, Bohm was deeply interested in exploring the nature of consciousness, with particular attention to the role of thought as it relates to attention, motivation, and conflict in the individual and in society. Those concerns were a natural extension of his earlier interest in

Hegelian philosophy. His views were brought into sharper focus through extensive interactions with the philosopher, speaker, and writer Jiddu Krishnamurti, beginning in 1961.[36][37] Their collaboration lasted a quarter of a century, and their recorded dialogues were published in several volumes.[38][39][40]

Bohm's prolonged involvement with the philosophy of Krishnamurti was regarded somewhat skeptically by some of his scientific peers.[41][42] An examination in 2017 of the relationship between the two men presents it in a more positive light and shows that Bohm's work in the psychological field was complementary to and compatible with his contributions to theoretical physics.[37]

The mature expression of Bohm's views in the psychological field was presented in a seminar conducted in 1990 at the Oak Grove School, founded by Krishnamurti in Ojai, California. It was one of a series of seminars held by Bohm at Oak Grove School, and it was published as Thought as a System.[43] In the seminar, Bohm described the pervasive influence of thought throughout society, including the many erroneous assumptions about the nature of thought and its effects in daily life.

In the seminar, Bohm develops several interrelated themes. He points out that thought is the ubiquitous tool that is used to solve every kind of problem: personal, social, scientific, and so on. Yet thought, he maintains, is also inadvertently the source of many of those problems. He recognizes and acknowledges the irony of the situation: it is as if one gets sick by going to the doctor.[37][43]

Bohm maintains that thought is a system, in the sense that it is an interconnected network of concepts, ideas and assumptions that pass seamlessly between individuals and throughout society. If there is a fault in the functioning of thought, therefore, it must be a systemic fault, which infects the entire network. The thought that is brought to bear to resolve any given problem, therefore, is susceptible to the same flaw that created the problem it is trying to solve.[37][43]

Thought proceeds as if it is merely reporting objectively, but in fact, it is often coloring and distorting perception in unexpected ways. What is required in order to correct the distortions introduced by thought, according to Bohm, is a form of proprioception, or self-awareness. Neural receptors throughout the body inform us directly of our physical position and movement, but there is no corresponding awareness of the activity of thought. Such an awareness would represent psychological proprioception and would enable the possibility of perceiving and correcting the unintended consequences of the thinking process.[37][43]

Further interests

In his book On Creativity, quoting

General Semantics, Bohm expressed the view that "metaphysics is an expression of a world view" and is "thus to be regarded as an art form, resembling poetry in some ways and mathematics in others, rather than as an attempt to say something true about reality as a whole".[44]

Bohm was keenly aware of various ideas outside the scientific mainstream. In his book Science, Order and Creativity, Bohm referred to the views of various biologists on the evolution of the species, including Rupert Sheldrake.[45] He also knew the ideas of Wilhelm Reich.[46]

Contrary to many other scientists, Bohm did not exclude the paranormal out of hand. Bohm temporarily even held Uri Geller's bending of keys and spoons to be possible, prompting warning remarks by his colleague Basil Hiley that it might undermine the scientific credibility of their work in physics. Martin Gardner reported this in a Skeptical Inquirer article and also critiqued the views of Jiddu Krishnamurti, with whom Bohm had met in 1959 and had had many subsequent exchanges. Gardner said that Bohm's view of the interconnectedness of mind and matter (on one occasion, Bohm summarized: "Even the electron is informed with a certain level of mind."[47]) "flirted with panpsychism".[42]

Bohm dialogue

To address societal problems during his later years, Bohm wrote a proposal for a solution that has become known as "Bohm Dialogue", in which equal status and "free space" form the most important prerequisites of communication and the appreciation of differing personal beliefs. An essential ingredient in this form of dialogue is that participants "suspend" immediate action or judgment and give themselves and each other the opportunity to become aware of the thought process itself. Bohm suggested that if the "dialogue groups" were experienced on a sufficiently-wide scale, they could help overcome the isolation and fragmentation that Bohm observed in society.

Later life

Bohm continued his work in quantum physics after his retirement, in 1987. His final work, the posthumously published The Undivided Universe: An Ontological Interpretation of Quantum Theory (1993), resulted from a decades-long collaboration with

Group Analysis Patrick de Maré, and he had a series of meetings with the Dalai Lama. He was elected Fellow of the Royal Society in 1990.[1]

Near the end of his life, Bohm began to experience a recurrence of the depression that he had suffered earlier in life. He was admitted to the Maudsley Hospital in South London on 10 May 1991. His condition worsened and it was decided that the only treatment that might help him was electroconvulsive therapy. Bohm's wife consulted psychiatrist David Shainberg, Bohm's longtime friend and collaborator, who agreed that electroconvulsive treatments were probably his only option. Bohm showed improvement from the treatments and was released on 29 August, but his depression returned and was treated with medication.[48]

Bohm died after suffering a

heart attack in Hendon, London, on 27 October 1992, aged 74.[49]

The film Infinite Potential is based on Bohm's life and studies; it adopts the same name as the biography by F. David Peat.[50]

Reception of causal theory

In the early 1950s, Bohm's causal quantum theory of hidden variables was mostly negatively received, with a widespread tendency among physicists to systematically ignore both Bohm personally and his ideas. There was a significant revival of interest in Bohm's ideas in the late 1950s and the early 1960s; the Ninth Symposium of the Colston Research Society in Bristol in 1957 was a key turning point toward greater tolerance of his ideas.[51]

Publications

See also

References

  1. ^
    S2CID 70366771
    .
  2. ^ David Peat Who's Afraid of Schrödinger's Cat? The New Science Revealed: Quantum Theory, Relativity, Chaos and the New Cosmology 1997, pp. 316–317
  3. ^ ).
  4. ^ a b Prideaux, Jeff. "Chapter 1: Introduction". Comparison between Karl Pribram's "Holographic Brain Theory" and more conventional models of neuronal computation. American Computer Science Association (Technical report). ACSA Digital Libraries. ¶ 2: This paper will discuss in detail the concept of a holograph and the evidence Karl Pribram uses to support the idea that the brain implements holonomic transformations that distribute episodic information over regions of the brain (see § Holonomic model of the brain).
  5. ^ Wholeness and the Implicate Order, Bohm – 4 July 2002
  6. ^ David Bohm: On Dialogue (2004) Routledge
  7. .
  8. .
  9. ^ [1] – By the Numbers – David Bohm
  10. ^ Peat 1997, p.21. "If he identified Jewish lore and customs with his father, then this was a way he would distance himself from Samuel. By the time he reached his late teens, he had become firmly agnostic."
  11. .
  12. ^ Peat 1997, p. 64
  13. ^ Russell Olwell: Physics and Politics in Cold War America: The Two Exiles of David Bohm, Working Paper Number 20. Program in Science, Technology, and Society. Massachusetts Institute of Technology.
  14. .
  15. Olival Freire, Jr.: Science and Exile: David Bohm, the cold war, and a new interpretation of quantum mechanics, HSPS, vol. 36, Part 1, pp. 1–34, ISSN 0890-9997, 2005, see footnote 8. Archived 26 March 2012 at the Wayback Machine
    .
  16. ^ Observing the Average Trajectories of Single Photons in a Two-Slit Interferometer.
  17. ^ D. Bohm: The characteristics of electrical discharges in magnetic fields, in: A. Guthrie, R. K. Wakerling (eds.), McGraw–Hill, 1949.
  18. ^ Maurice A. de Gosson, Basil J. Hiley: Zeno paradox for Bohmian trajectories: the unfolding of the metatron, 3 January 2011 (PDF – retrieved 16 February 2012).
  19. ^ B. J. Hiley: Some remarks on the evolution of Bohm's proposals for an alternative to quantum mechanics, 30 January 2010.
  20. .
  21. ^ Russell Olwell: Physics and politics in cold war America: the two exiles of David Bohm, Working Paper Number 2, Working Program in Science, Technology, and Society; Massachusetts Institute of Technology
  22. ^ , HSPS, vol. 36, part 1, pp. 1–34, ISSN 0890-9997, 2005
  23. ^ "Erwin Madelung 1881–1972". Goethe-Universität Frankfurt am Main. 12 December 2008. Archived from the original on 12 February 2012. Retrieved 8 May 2012.
  24. .
  25. .
  26. .
  27. .
  28. .
  29. .
  30. ^ "collected papers". Archived from the original on 11 February 2006. Retrieved 26 November 2005.
  31. S2CID 121080682
    .
  32. ^ David Bohm, F. David Peat: Science, Order, and Creativity, 1987
  33. ^ Basil J. Hiley: Process and the Implicate Order: their relevance to Quantum Theory and Mind. (PDF Archived 26 September 2011 at the Wayback Machine)
  34. ^ The holographic brain Archived 18 May 2006 at the Wayback Machine, with Karl Pribram
  35. .
  36. ^ .
  37. .
  38. .
  39. .
  40. ^ Peat 1997
  41. ^ a b Gardner, Martin (July 2000). "David Bohm and Jiddo Krishnamurti". Skeptical Inquirer. Archived from the original on 9 March 2015.
  42. ^ .
  43. .
  44. .
  45. ^ Peat 1997, p. 80
  46. .
  47. ^ Peat 1997, pp.308–317
  48. ^ Peat 1997, pp. 308–317
  49. ^ Infinite potential: the life and times of David Bohm (film) www.infinitepotential.com, accessed 28 December 2020
  50. .

Sources

Further reading