Diarrhea

Page semi-protected
Source: Wikipedia, the free encyclopedia.

Diarrhea
Other namesDiarrhoea (or diarrhœa)
zinc supplementation[2]
Frequency≈2.4 billion (2015)[3]
Deaths1.53 million (2019)[4]

Diarrhea (American English), also spelled diarrhoea or diarrhœa (British English), is the condition of having at least three loose, liquid, or watery bowel movements in a day.[2] It often lasts for a few days and can result in dehydration due to fluid loss.[2] Signs of dehydration often begin with loss of the normal stretchiness of the skin and irritable behaviour.[2] This can progress to decreased urination, loss of skin color, a fast heart rate, and a decrease in responsiveness as it becomes more severe.[2] Loose but non-watery stools in babies who are exclusively breastfed, however, are normal.[2]

What is diarrhea, how is it caused, treated and prevented (see also script).
Bristol stool scale

The most common cause is an infection of the

bile acid diarrhea, and a number of medications.[5][6][7] In most cases, stool cultures to confirm the exact cause are not required.[8]

Diarrhea can be prevented by improved

diarrhea following travelling, and those who grow specific bacteria or parasites in their stool.[8] Loperamide may help decrease the number of bowel movements but is not recommended in those with severe disease.[8]

About 1.7 to 5 billion cases of diarrhea occur per year.

developing countries, where young children get diarrhea on average three times a year.[2] Total deaths from diarrhea are estimated at 1.53 million in 2019—down from 2.9 million in 1990.[4] In 2012, it was the second most common cause of deaths in children younger than five (0.76 million or 11%).[2][12] Frequent episodes of diarrhea are also a common cause of malnutrition and the most common cause in those younger than five years of age.[2] Other long term problems that can result include stunted growth and poor intellectual development.[12]

Terminology

The word diarrhea is from the Ancient Greek διάρροια from διά dia "through" and ῥέω rheo "flow".

Diarrhea is the spelling in American English, whereas diarrhoea is the spelling in British English.

Slang terms for the condition include "the runs", "the squirts" (or "squits" in Britain[13]) and "the trots".[14][15]

The word is often pronounced as /ˌdəˈrə/ DY-ə-REE.

Definition

Diarrhea is defined by the World Health Organization as having three or more loose or liquid stools per day, or as having more stools than is normal for that person.[2]

Acute diarrhea is defined as an abnormally frequent discharge of semisolid or fluid fecal matter from the bowel, lasting less than 14 days, by World Gastroenterology Organization.[16] Acute diarrhea that is watery may be known as AWD (Acute Watery Diarrhoea.)[17]

Secretory

Secretory diarrhea means that there is an increase in the active secretion, or there is an inhibition of absorption. There is little to no structural damage. The most common cause of this type of diarrhea is a

anions, especially chloride ions (Cl). Therefore, to maintain a charge balance in the gastrointestinal tract, sodium (Na+) is carried with it, along with water. In this type of diarrhea intestinal fluid secretion is isotonic with plasma even during fasting.[18][19]
It continues even when there is no oral food intake.

Osmotic

Osmotic diarrhea occurs when too much water is drawn into the bowels. If a person drinks solutions with excessive sugar or excessive salt, these can draw water from the body into the bowel and cause osmotic diarrhea.

laxatives (which work to alleviate constipation by drawing water into the bowels). In healthy individuals, too much magnesium or vitamin C or undigested lactose can produce osmotic diarrhea and distention of the bowel. A person who has lactose intolerance can have difficulty absorbing lactose after an extraordinarily high intake of dairy products. In persons who have fructose malabsorption, excess fructose intake can also cause diarrhea. High-fructose foods that also have a high glucose content are more absorbable and less likely to cause diarrhea. Sugar alcohols such as sorbitol (often found in sugar-free foods) are difficult for the body to absorb and, in large amounts, may lead to osmotic diarrhea.[18]
In most of these cases, osmotic diarrhea stops when the offending agent, e.g. milk or sorbitol, is stopped.

Exudative

Exudative diarrhea occurs with the presence of blood and pus in the stool. This occurs with

inflammatory bowel diseases, such as Crohn's disease or ulcerative colitis, and other severe infections such as E. coli or other forms of food poisoning.[19][18]

Inflammatory

Inflammatory diarrhea occurs when there is damage to the mucosal lining or brush border, which leads to a passive loss of protein-rich fluids and a decreased ability to absorb these lost fluids. Features of all three of the other types of diarrhea can be found in this type of diarrhea.[21] It can be caused by bacterial infections, viral infections, parasitic infections, or autoimmune problems such as inflammatory bowel diseases. It can also be caused by tuberculosis, colon cancer, and enteritis.[19]

Dysentery

If there is blood visible in the stools, it is also known as dysentery. The blood is a trace of an invasion of bowel tissue. Dysentery is a symptom of, among others, Shigella, Entamoeba histolytica, and Salmonella.[19]

Health effects

Diarrheal disease may have a negative impact on both physical fitness and mental development. "Early childhood malnutrition resulting from any cause reduces physical fitness and work productivity in adults,"

helminth infection and early breastfeeding, children who had experienced severe diarrhea had significantly lower scores on a series of tests of intelligence.[22][24]

Diarrhea can cause

Causes

human gastrointestinal tract

In the latter stages of human digestion, ingested materials are inundated with water and digestive fluids such as gastric acid, bile, and digestive enzymes in order to break them down into their nutrient components, which are then absorbed into the bloodstream via the intestinal tract in the small intestine. Prior to defecation, the large intestine reabsorbs the water and other digestive solvents in the waste product in order to maintain proper hydration and overall equilibrium.[25] Diarrhea occurs when the large intestine is prevented, for any number of reasons, from sufficiently absorbing the water or other digestive fluids from fecal matter, resulting in a liquid, or "loose", bowel movement.[26]

bacterial infections predominate.[27] Various toxins such as mushroom poisoning
and drugs can also cause acute diarrhea.

Chronic diarrhea can be the part of the presentations of a number of chronic medical conditions affecting the intestine. Common causes include

Infections

There are many causes of infectious diarrhea, which include

E coli o157:h7, are the most common cause of infectious bloody diarrhea in the United States.[35]

Campylobacter spp. are a common cause of bacterial diarrhea, but infections by Salmonella spp., Shigella spp. and some strains of Escherichia coli are also a frequent cause.[36]

In the elderly, particularly those who have been treated with antibiotics for unrelated infections, a toxin produced by

Clostridioides difficile often causes severe diarrhea.[37]

Parasites, particularly protozoa e.g., Cryptosporidium spp., Giardia spp., Entamoeba histolytica, Blastocystis spp., Cyclospora cayetanensis, are frequently the cause of diarrhea that involves chronic infection. The broad-spectrum antiparasitic agent nitazoxanide has shown efficacy against many diarrhea-causing parasites.[38]

Other infectious agents, such as

malnourished individuals, diarrhea can lead to severe dehydration and can become life-threatening.[39]

Sanitation

Poverty often leads to unhygienic living conditions, as in this community in the Indian Himalayas. Such conditions promote contraction of diarrheal diseases, as a result of poor sanitation and hygiene.

Open defecation is a leading cause of infectious diarrhea leading to death.[40]

Poverty is a good indicator of the rate of infectious diarrhea in a population. This association does not stem from poverty itself, but rather from the conditions under which impoverished people live. The absence of certain resources compromises the ability of the poor to defend themselves against infectious diarrhea. "Poverty is associated with poor housing, crowding, dirt floors, lack of access to clean water or to sanitary disposal of fecal waste (sanitation), cohabitation with domestic animals that may carry human pathogens, and a lack of refrigerated storage for food, all of which increase the frequency of diarrhea ... Poverty also restricts the ability to provide age-appropriate, nutritionally balanced diets or to modify diets when diarrhea develops so as to mitigate and repair nutrient losses. The impact is exacerbated by the lack of adequate, available, and affordable medical care."[41]

One of the most common causes of infectious diarrhea is a lack of clean water. Often, improper fecal disposal leads to contamination of groundwater. This can lead to widespread infection among a population, especially in the absence of water filtration or purification. Human feces contains a variety of potentially harmful human

pathogens.[42]

Nutrition

Proper nutrition is important for health and functioning, including the prevention of infectious diarrhea. It is especially important to young children who do not have a fully developed immune system.

developing countries can, even in mild cases, have a significant impact on the development and proper functioning of the human immune system.[43][44] Indeed, this relationship between zinc deficiency and reduced immune functioning corresponds with an increased severity of infectious diarrhea. Children who have lowered levels of zinc have a greater number of instances of diarrhea, severe diarrhea, and diarrhea associated with fever.[45] Similarly, vitamin A deficiency can cause an increase in the severity of diarrheal episodes. However, there is some discrepancy when it comes to the impact of vitamin A deficiency on the rate of disease. While some argue that a relationship does not exist between the rate of disease and vitamin A status,[46] Others suggest an increase in the rate associated with deficiency.[47] Given that estimates suggest 127 million preschool children worldwide are vitamin A deficient, this population has the potential for increased risk of disease contraction.[48]

Malabsorption

Malabsorption is the inability to absorb food fully, mostly from disorders in the small bowel, but also due to maldigestion from diseases of the pancreas.

Causes include:[citation needed]

Inflammatory bowel disease

The two overlapping types here are of unknown origin:

  • colon near the rectum
    .
  • Crohn's disease typically affects fairly well demarcated segments of bowel in the colon and often affects the end of the small bowel.

Irritable bowel syndrome

Another possible cause of diarrhea is irritable bowel syndrome (IBS), which usually presents with abdominal discomfort relieved by defecation and unusual stool (diarrhea or constipation) for at least three days a week over the previous three months.[49] Symptoms of diarrhea-predominant IBS can be managed through a combination of dietary changes, soluble fiber supplements and medications such as loperamide or codeine. About 30% of patients with diarrhea-predominant IBS have bile acid malabsorption diagnosed with an abnormal SeHCAT test.[50]

Other diseases

Diarrhea can be caused by other diseases and conditions, namely:

Medications

Over 700 medications, such as penicillin, are known to cause diarrhea.[53][54] The classes of medications that are known to cause diarrhea are laxatives, antacids, heartburn medications, antibiotics, anti-neoplastic drugs, anti-inflammatories as well as many dietary supplements.[19]

Pathophysiology

Ion transporters targeted by enteric infections [55]
Function   Transporter
Absorption
DRA
Secretion
CFTR
Absorption and secretion
Sodium potassium ATPase

Evolution

According to two researchers,

Lomotil) caused people to stay feverish twice as long as those not so treated. The researchers indeed themselves observed that: "Lomotil may be contraindicated in shigellosis. Diarrhea may represent a defense mechanism".[57]

Diagnostic approach

The following types of diarrhea may indicate further investigation is needed:

A severity score is used to aid diagnosis in children.[58]

When diarrhea lasts for more than four weeks a number of further tests may be recommended including:[59]

A 2019 guideline recommended that testing for ova and parasites was only needed in people who are at high risk though they recommend routine testing for giardia.[60] Erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) were not recommended.[60]

Epidemiology

Deaths due to diarrhoeal diseases per million persons in 2012
  0–2
  3–10
  11–18
  19–30
  31–46
  47–80
  81–221
  222–450
  451–606
  607–1799
Disability-adjusted life year for diarrhea per 100,000 inhabitants in 2004[61]
  no data
  < 500
  500–1000
  1000–1500
  1500–2000
  2000–2500
  2500–3000
  3000–3500
  3500–4000
  4000–4500
  4500–5000
  5000–6000
  > 6000

Worldwide in 2004, approximately 2.5 billion cases of diarrhea occurred, which resulted in 1.5 million deaths among children under the age of five.[1] Greater than half of these were in Africa and South Asia.[1] This is down from a death rate of 4.5 million in 1980 for gastroenteritis.[62] Diarrhea remains the second leading cause of infant mortality (16%) after pneumonia (17%) in this age group.[1]

The majority of such cases occur in the developing world, with over half of the recorded cases of childhood diarrhea occurring in Africa and Asia, with 696 million and 1.2 billion cases, respectively, compared to only 480 million in the rest of the world.[63]

Infectious diarrhea resulted in about 0.7 million deaths in children under five years old in 2011 and 250 million lost school days.[64][65] In the Americas, diarrheal disease accounts for a total of 10% of deaths among children aged 1–59 months while in South East Asia, it accounts for 31.3% of deaths.[66] It is estimated that around 21% of child mortalities in developing countries are due to diarrheal disease.[67]

Prevention

Sanitation

Numerous studies have shown that improvements in drinking water and sanitation (WASH) lead to decreased risks of diarrhoea.[68] Such improvements might include for example use of water filters, provision of high-quality piped water and sewer connections.[68]

In institutions, communities, and households, interventions that promote hand washing with soap lead to significant reductions in the incidence of diarrhea.[69] The same applies to preventing open defecation at a community-wide level and providing access to improved sanitation.[64][70] This includes use of toilets and implementation of the entire sanitation chain connected to the toilets (collection, transport, disposal or reuse of human excreta).

There is limited evidence that safe disposal of child or adult feces can prevent diarrheal disease.[71][72]

Hand washing

Basic sanitation techniques can have a profound effect on the transmission of diarrheal disease. The implementation of hand washing using soap and water, for example, has been experimentally shown to reduce the incidence of disease by approximately 30–48%.[73][74][69] Hand washing in developing countries, however, is compromised by poverty as acknowledged by the CDC: "Handwashing is integral to disease prevention in all parts of the world; however, access to soap and water is limited in a number of less developed countries. This lack of access is one of many challenges to proper hygiene in less developed countries." Solutions to this barrier require the implementation of educational programs that encourage sanitary behaviours.[75]

Water

Given that water contamination is a major means of transmitting diarrheal disease, efforts to provide clean water supply and improved sanitation have the potential to dramatically cut the rate of disease incidence. In fact, it has been proposed that we might expect an 88% reduction in child mortality resulting from diarrheal disease as a result of improved water sanitation and hygiene.[42][76] Similarly, a meta-analysis of numerous studies on improving water supply and sanitation shows a 22–27% reduction in disease incidence, and a 21–30% reduction in mortality rate associated with diarrheal disease.[77]

Chlorine treatment of water, for example, has been shown to reduce both the risk of diarrheal disease, and of contamination of stored water with diarrheal pathogens.[78]

Vaccination

Immunization against the pathogens that cause diarrheal disease is a viable prevention strategy, however it does require targeting certain pathogens for vaccination. In the case of Rotavirus, which was responsible for around 6% of diarrheal episodes and 20% of diarrheal disease deaths in the children of developing countries, use of a Rotavirus vaccine in trials in 1985 yielded a slight (2–3%) decrease in total diarrheal disease incidence, while reducing overall mortality by 6–10%. Similarly, a Cholera vaccine showed a strong reduction in morbidity and mortality, though the overall impact of vaccination was minimal as Cholera is not one of the major causative pathogens of diarrheal disease.[79] Since this time, more effective vaccines have been developed that have the potential to save many thousands of lives in developing nations, while reducing the overall cost of treatment, and the costs to society.[80][81]

Rotavirus vaccine decreases the rates of diarrhea in a population.[1][82] New vaccines against rotavirus, Shigella, Enterotoxigenic Escherichia coli (ETEC), and cholera are under development, as well as other causes of infectious diarrhea.[medical citation needed]

Nutrition

Dietary deficiencies in developing countries can be combated by promoting better eating practices. Zinc supplementation proved successful showing a significant decrease in the incidence of diarrheal disease compared to a control group.[83][84] The majority of the literature suggests that vitamin A supplementation is advantageous in reducing disease incidence.[85] Development of a supplementation strategy should take into consideration the fact that vitamin A supplementation was less effective in reducing diarrhea incidence when compared to vitamin A and zinc supplementation, and that the latter strategy was estimated to be significantly more cost effective.[86]

Breastfeeding

Breastfeeding practices have been shown to have a dramatic effect on the incidence of diarrheal disease in poor populations. Studies across a number of developing nations have shown that those who receive exclusive breastfeeding during their first 6 months of life are better protected against infection with diarrheal diseases.[87] One study in Brazil found that non-breastfed infants were 14 times more likely to die from diarrhea than exclusively breastfed infants.[88] Exclusive breastfeeding is currently recommended for the first six months of an infant's life by the WHO,[89][90] with continued breastfeeding until at least two years of age.[90]

Others

antibiotics.[91] Insecticide spraying may reduce fly numbers and the risk of diarrhea in children in a setting where there is seasonal variations in fly numbers throughout the year.[92]

Management

In many cases of diarrhea, replacing lost fluid and salts is the only treatment needed. This is usually by mouth –

intravenously.[1] Diet restrictions such as the BRAT diet are no longer recommended.[93] Research does not support the limiting of milk to children as doing so has no effect on duration of diarrhea.[94] To the contrary, WHO recommends that children with diarrhea continue to eat as sufficient nutrients are usually still absorbed to support continued growth and weight gain, and that continuing to eat also speeds up recovery of normal intestinal functioning.[20] CDC recommends that children and adults with cholera also continue to eat.[95] There is no evidence that early refeeding in children can cause an increase in inappropriate use of intravenous fluid, episodes of vomiting, and risk of having persistent diarrhea.[96]

Medications such as

contraindicated in certain situations.[97]

Fluids

A person consuming oral rehydration solution

Oral rehydration solution (ORS) (a slightly sweetened and salty water) can be used to prevent dehydration. Standard home solutions such as salted rice water, salted yogurt drinks, vegetable and chicken soups with salt can be given. Home solutions such as water in which cereal has been cooked, unsalted soup, green coconut water, weak tea (unsweetened), and unsweetened fresh fruit juices can have from half a teaspoon to full teaspoon of salt (from one-and-a-half to three grams) added per liter. Clean plain water can also be one of several fluids given.[20] There are commercial solutions such as Pedialyte, and relief agencies such as UNICEF widely distribute packets of salts and sugar. A WHO publication for physicians recommends a homemade ORS consisting of one liter water with one teaspoon salt (3 grams) and two tablespoons sugar (18 grams) added[20] (approximately the "taste of tears"[98]). Rehydration Project recommends adding the same amount of sugar but only one-half a teaspoon of salt, stating that this more dilute approach is less risky with very little loss of effectiveness.[99] Both agree that drinks with too much sugar or salt can make dehydration worse.[20][99]

Appropriate amounts of supplemental zinc and potassium should be added if available. But the availability of these should not delay rehydration. As WHO points out, the most important thing is to begin preventing dehydration as early as possible.[20] In another example of prompt ORS hopefully preventing dehydration, CDC recommends for the treatment of cholera continuing to give Oral Rehydration Solution during travel to medical treatment.[95]

Vomiting often occurs during the first hour or two of treatment with ORS, especially if a child drinks the solution too quickly, but this seldom prevents successful rehydration since most of the fluid is still absorbed. WHO recommends that if a child vomits, to wait five or ten minutes and then start to give the solution again more slowly.[20]

Drinks especially high in simple sugars, such as

nasogastric tube can be used in young children to administer fluids if warranted.[101]

Eating

The WHO recommends a child with diarrhea continue to be fed. Continued feeding speeds the recovery of normal intestinal function. In contrast, children whose food is restricted have diarrhea of longer duration and recover intestinal function more slowly. The WHO states "Food should never be withheld and the child's usual foods should not be diluted. Breastfeeding should always be continued."[20] In the specific example of cholera, the CDC makes the same recommendation.[95] Breast-fed infants with diarrhea often choose to breastfeed more, and should be encouraged to do so.[20] In young children who are not breast-fed and live in the developed world, a lactose-free diet may be useful to speed recovery.[102] Eating food containing fibers may help.[103]

Medications

Antidiarrheal agents can be classified into four different groups: antimotility, antisecretory, adsorbent, and anti-infectious.

antibiotic resistance, particularly Shigella.[108] Antibiotics can also cause diarrhea, and antibiotic-associated diarrhea
is the most common adverse effect of treatment with general antibiotics.

While bismuth compounds (

Pepto-Bismol) decreased the number of bowel movements in those with travelers' diarrhea, they do not decrease the length of illness.[109] Anti-motility agents like loperamide are also effective at reducing the number of stools but not the duration of disease.[8] These agents should be used only if bloody diarrhea is not present.[110]

Diosmectite, a natural aluminomagnesium silicate clay, is effective in alleviating symptoms of acute diarrhea in children,[111] and also has some effects in chronic functional diarrhea, radiation-induced diarrhea, and chemotherapy-induced diarrhea.[52] Another absorbent agent used for the treatment of mild diarrhea is kaopectate.

Racecadotril an antisecretory medication may be used to treat diarrhea in children and adults.[104] It has better tolerability than loperamide, as it causes less constipation and flatulence.[112] However, it has little benefit in improving acute diarrhea in children.[113]

cholestyramine can be effective in chronic diarrhea due to bile acid malabsorption. Therapeutic trials of these drugs are indicated in chronic diarrhea if bile acid malabsorption cannot be diagnosed with a specific test, such as SeHCAT retention.[114]

Alternative therapies

Zinc supplementation may benefit children over six months old with diarrhea in areas with high rates of malnourishment or zinc deficiency.[115] This supports the World Health Organization guidelines for zinc, but not in the very young.

A Cochrane Review from 2020 concludes that probiotics make little or no difference to people who have diarrhea lasting 2 days or longer and that there is no proof that they reduce its duration.[116] The probiotic lactobacillus can help prevent antibiotic-associated diarrhea in adults but possibly not children.[117] For those with lactose intolerance, taking digestive enzymes containing lactase when consuming dairy products often improves symptoms.

See also

References

  1. ^ a b c d e f g h "whqlibdoc.who.int" (PDF). World Health Organization. Archived (PDF) from the original on 8 November 2010.
  2. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z "Diarrhoeal disease Factsheet". World Health Organization. 2 May 2017. Archived from the original on 11 November 2020. Retrieved 29 October 2020.
  3. PMID 27733282
    .
  4. ^ a b Dadonaite B, Ritchie H, Roser M (1 November 2018). "Diarrheal diseases". Our World in Data. Archived from the original on 19 June 2022. Retrieved 28 April 2022.
  5. ^ .
  6. (PDF) from the original on 9 May 2020. Retrieved 23 September 2019.
  7. ^ .
  8. .
  9. ^ ACEP (14 October 2013). "Nation's Emergency Physicians Announce List of Test and Procedures to Question as Part of Choosing Wisely Campaign". Choosing Wisely. Archived from the original on 17 May 2014. Retrieved 18 June 2014.
  10. PMID 26063472
    .
  11. ^ a b "Global Diarrhea Burden". CDC. 24 January 2013. Archived from the original on 7 July 2014. Retrieved 18 June 2014.
  12. ^ The dictionary definition of squits at Wiktionary
  13. ^ The dictionary definition of runs at Wiktionary
  14. Merriam Webster. Archived
    from the original on 11 December 2018. Retrieved 11 December 2018.
  15. ^ "WGO Practice Guideline – Acute diarrhea". Archived from the original on 22 February 2011. Retrieved 9 March 2011.
  16. ^ "Cholera outbreak toobox" (PDF). WHO. June 2019. Archived (PDF) from the original on 30 May 2022. Retrieved 2 May 2022.
  17. ^ a b c "The Basics of Diarrhea". Webmd.com. 17 February 2011. Archived from the original on 11 March 2011. Retrieved 9 March 2011.
  18. ^
    PMID 26429773
    .
  19. ^ a b c d e f g h i j k "The Treatment Of Diarrhea, A manual for physicians and other senior health workers" (PDF). Sometimes needs to be downloaded twice. See "4.2 Treatment Plan A: home therapy to prevent dehydration and malnutrition," "4.3 Treatment Plan B: oral rehydration therapy for children with some dehydration," and "4.4 Treatment Plan C: for patients with severe dehydration" on pages 8 to 16 (12–20 in PDF). See also "8. Management of Diarrhoea with Severe Malnutrition" on pages 22–24 (26–30 in PDF) and "Annex 2: Oral and Intravenous Rehydration Solutions" on pages 33–37 (37–41 in PDF). World Health Organization. 2005. Archived (PDF) from the original on 19 October 2011.
  20. PMID 22677080
    .
  21. ^ a b Disease Control Priorities Project. "Public Health Significance of Diarrheal Illnesses". The World Bank Group. Archived from the original on 25 January 2014. Retrieved 12 October 2013.
  22. PMID 1632474
    .
  23. .
  24. .
  25. ^ "Diarrhea: Types, Causes, Complications & Treatment". Cleveland Clinic. Archived from the original on 19 July 2022. Retrieved 19 July 2022.
  26. ^
    PMID 16267716
    .
  27. ^ "Microscopic colitis - Symptoms and causes". Mayo Clinic. Archived from the original on 3 April 2022. Retrieved 19 July 2022.
  28. S2CID 34096072
    .
  29. from the original on 14 January 2023. Retrieved 9 September 2017.
  30. .
  31. .
  32. .
  33. .
  34. from the original on 15 June 2022, retrieved 19 July 2022
  35. .
  36. .
  37. .
  38. .
  39. ^ "WHO | Diarrhoeal disease". Who.int. Archived from the original on 1 April 2014. Retrieved 10 March 2014.
  40. .
  41. ^ .
  42. .
  43. .
  44. .
  45. ^ Rice AL, West KP, Black RE (2004). "Vitamin A deficiency" (PDF). In Ezzati M, Lopez AD, Rodgers A, Murray CJ (eds.). Comparative quantification of health risks: global and regional burden of disease attributes to selected major risk factors. Vol. 1. Geneva: World Health Organization. pp. 211–56, especially 238–240. Archived (PDF) from the original on 31 July 2020. Retrieved 30 December 2018.
  46. PMID 6496388
    .
  47. .
  48. .
  49. .
  50. .
  51. ^ .
  52. .
  53. ^ Dekel R, Sperber AD. "Diarrhea & Incontinence Caused by Medication". International Foundation for Gastrointestinal Disorders (IFFGD). Archived from the original on 24 February 2017. Retrieved 18 May 2017.
  54. PMID 29928670
    .
  55. .
  56. .
  57. .
  58. .
  59. ^ .
  60. ^ "Mortality and Burden of Disease Estimates for WHO Member States in 2004" (xls). World Health Organization. Archived from the original on 28 August 2021. Retrieved 4 October 2020.
  61. from the original on 18 October 2013.
  62. ^ "Diarrhoea: why children are still dying and what can be done" (PDF). World Health Organization. Archived (PDF) from the original on 19 October 2013. Retrieved 12 October 2013.
  63. ^ a b "Call to action on sanitation" (PDF). United Nations. Archived from the original (PDF) on 19 August 2014. Retrieved 15 August 2014.
  64. PMID 23582727
    .
  65. .
  66. .
  67. ^ (PDF) from the original on 13 April 2020. Retrieved 17 December 2019.
  68. ^ .
  69. .
  70. .
  71. .
  72. .
  73. .
  74. ^ "Diarrheal Diseases in Less Developed Countries". CDC. Archived from the original on 4 November 2013. Retrieved 28 October 2013.
  75. S2CID 14509705
    .
  76. .
  77. .
  78. .
  79. .
  80. (PDF) from the original on 3 September 2014.
  81. .
  82. .
  83. .
  84. .
  85. .
  86. .
  87. .
  88. ^ Sguassero Y. "Optimal duration of exclusive breastfeeding: RHL commentary". WHO. Archived from the original on 3 November 2013. Retrieved 14 October 2013.
  89. ^ a b "Infant and young child feeding". World Health Organization. 3 October 2017. Archived from the original on 8 February 2015. Retrieved 5 January 2018.
  90. PMID 22570464
    .
  91. .
  92. from the original on 28 October 2014.
  93. ^ "BestBets: Does Withholding milk feeds reduce the duration of diarrhoea in children with acute gastroenteritis?". Archived from the original on 4 May 2009.
  94. ^ a b c Community Health Worker Training Materials for Cholera Prevention and Control Archived 20 October 2011 at the Wayback Machine, CDC, slides at back are dated 17 November 2010. Page 7 states "...  Continue to breastfeed your baby if the baby has watery diarrhea, even when traveling to get treatment. Adults and older children should continue to eat frequently."
  95. PMID 21735409
    .
  96. .
  97. ^ A Guide on Safe Food for Travellers Archived 9 July 2012 at the Wayback Machine, Welcome to South Africa, Host to the 2010 FIFA World Cup (bottom left of page 1).
  98. ^ a b Rehydration Project, "Diarrhoea, Diarrhea, Dehydration, Oral Rehydration, Mother and Child Nutrition, Water, Sanitation, Hygiene – Rehydration Project". Archived from the original on 8 June 2015. Retrieved 22 June 2015. Homemade Oral Rehydration Solution Recipe.
  99. ^ a b "Management of acute diarrhoea and vomiting due to gastroenteritis in children under 5". National Institute of Clinical Excellence. April 2009. Archived from the original on 2 August 2009.
  100. PMID 15861741
    .
  101. .
  102. ^ "The Facts About Fiber". Archived from the original on 27 July 2020. Retrieved 25 January 2020.
  103. ^
    S2CID 56519371
    .
  104. .
  105. ^ .
  106. .
  107. ^ "Diarrhoeal Diseases". World Health Organization. February 2009. Archived from the original on 15 December 2008.
  108. PMID 19538576
    .
  109. .
  110. .
  111. .
  112. .
  113. .
  114. .
  115. .
  116. .

External links

The offline app allows you to download all of Wikipedia's medical articles in an app to access them when you have no Internet.
Wikipedia's health care articles can be viewed offline with the Medical Wikipedia app.