Dietary fiber

Source: Wikipedia, the free encyclopedia.
(Redirected from
Dietary fibre
)

Foods rich in fibers: fruits, vegetables and grains
Wheat bran has a high content of dietary fiber.

Dietary fiber (fibre in Commonwealth English) or roughage is the portion of plant-derived food that cannot be completely broken down by human digestive enzymes.[1] Dietary fibers are diverse in chemical composition, and can be grouped generally by their solubility, viscosity, and fermentability, which affect how fibers are processed in the body.[2] Dietary fiber has two main components: soluble fiber and insoluble fiber, which are components of plant-based foods, such as legumes, whole grains and cereals, vegetables, fruits, and nuts or seeds.[2][3] A diet high in regular fiber consumption is generally associated with supporting health and lowering the risk of several diseases.[2][4] Dietary fiber consists of non-starch polysaccharides and other plant components such as cellulose, resistant starch, resistant dextrins, inulin, lignins, chitins, pectins, beta-glucans, and oligosaccharides.[1][2][3]

Food sources of dietary fiber have traditionally been divided according to whether they provide soluble or insoluble fiber. Plant foods contain both types of fiber in varying amounts, according to the fiber characteristics of viscosity and fermentability.[1][5] Advantages of consuming fiber depend upon which type of fiber is consumed and which benefits may result in the gastrointestinal system.[6] Bulking fibers – such as cellulose and hemicellulose (including psyllium) – absorb and hold water, promoting bowel movement regularity.[7] Viscous fibers – such as beta-glucan and psyllium – thicken the fecal mass.[7] Fermentable fibers – such as resistant starch, xanthan gum, and inulin – feed the bacteria and microbiota of the large intestine, and are metabolized to yield short-chain fatty acids, which have diverse roles in gastrointestinal health.[8][9][10]

Soluble fiber (fermentable fiber or prebiotic fiber) – which dissolves in water – is generally fermented in the

wheat dextrin, oligosaccharides, and resistant starches[11] (in legumes and bananas), are soluble non-viscous fibers.[2] Regular intake of soluble fibers, such as beta-glucans from oats or barley, has been established to lower blood levels of LDL cholesterol, a risk factor for cardiovascular diseases.[2][4][12] Soluble fiber supplements also significantly lower LDL cholesterol.[13][14][15]

Insoluble fiber – which does not dissolve in water – is inert to digestive enzymes in the upper gastrointestinal tract. Examples are wheat bran, cellulose, and lignin. Coarsely ground insoluble fiber triggers the secretion of mucus in the large intestine, providing bulking. Finely ground insoluble fiber does not have this effect and can actually have a constipating effect.[2] Some forms of insoluble fiber, such as resistant starches, can be fermented in the colon.[16]

Definition

Dietary fiber is defined to be plant components that are not broken down by human digestive enzymes.[1] In the late 20th century, only lignin and some polysaccharides were known to satisfy this definition, but in the early 21st century, resistant starch and oligosaccharides were included as dietary fiber components.[1][17] The most accepted definition of dietary fiber is "all polysaccharides and lignin, which are not digested by the endogenous secretion of the human digestive tract".[18] Currently, most animal nutritionists are using either a physiological definition, "the dietary components resistant to degradation by mammalian enzymes", or a chemical definition, "the sum of non-starch polysaccharides (NSP) and lignin".[18]

Types and sources

Nutrient Food additive Source/Comments
water-insoluble dietary fibers
β-glucans (a few of which are water-soluble)
   Cellulose E 460 cereals, fruit, vegetables (in all plants in general)
   Chitin in fungi, exoskeleton of insects and crustaceans
Hemicellulose cereals,
timber
, legumes
   Hexoses wheat, barley
   Pentose rye, oat
Lignin
garden bean
), cereals
Xanthan gum E 415 production with Xanthomonas-bacteria from sugar substrates
Resistant starch Can be starch protected by seed or shell (type RS1), granular starch (type RS2) or retrograded starch (type RS3)[16]
   Resistant starch high amylose corn, barley, high amylose wheat, legumes, raw bananas, cooked and cooled pasta and potatoes[16]
water-soluble dietary fibers
Arabinoxylan (a hemicellulose) psyllium[19]
Fructans replace or complement in some plant taxa the starch as storage carbohydrate
   Inulin in diverse plants, e.g.
topinambour, chicory
, etc.
Polyuronide
   Pectin E 440 in the fruit skin (mainly apples, quinces), vegetables
   Alginic acids (Alginates) E 400–E 407 in Algae
      
Sodium alginate
E 401
      
Potassium alginate
E 402
      Ammonium alginate E 403
      Calcium alginate E 404
      Propylene glycol alginate (PGA) E 405
      agar E 406
      carrageenan E 407 red algae
Raffinose legumes
Polydextrose E 1200 synthetic polymer, c. 1 kcal/g

Contents in food

Children eating fiber-rich food

Dietary fiber is found in fruits, vegetables and

whole grains. The amounts of fiber contained in common foods are listed in the following table:[20]

Food group Serving mean Fibermass per serving
Fruit 120 
mL (0.5 cup)[21][22]
1.1 g
Dark green vegetables 120 mL (0.5 cup) 6.4 g
Orange vegetables 120 mL (0.5 cup) 2.1 g
Cooked dry beans (legumes) 120 mL (0.5 cup) 8.0 g
Starchy vegetables 120 mL (0.5 cup) 1.7 g
Other vegetables 120 mL (0.5 cup) 1.1 g
Whole grains 28 g (1 oz) 2.4 g
Meat 28 g (1 oz) 0.1 g

Dietary fiber is found in plants, typically eaten whole, raw or cooked, although fiber can be added to make

Standard American Diet (SAD) because it is rich in processed and artificially sweetened foods, with minimal intake of vegetables and legumes.[23][24]

Plant sources

Some plants contain significant amounts of soluble and insoluble fiber. For example, plums and prunes have a thick skin covering a juicy pulp. The skin is a source of insoluble fiber, whereas soluble fiber is in the pulp. Grapes also contain a fair amount of fiber.[25]

Soluble fiber

Found in varying quantities in all plant foods, including:

Insoluble fiber

Sources include:

Supplements

These are a few example forms of fiber that have been sold as supplements or food additives. These may be marketed to consumers for nutritional purposes, treatment of various

colon cancer
, and losing weight.

Soluble fiber

Soluble fiber supplements may be beneficial for alleviating symptoms of

Clostridium difficile,[32] due in part to the short-chain fatty acids produced with subsequent anti-inflammatory actions upon the bowel.[33][34] Fiber supplements may be effective in an overall dietary plan for managing irritable bowel syndrome by modification of food choices.[35]

Insoluble fiber

One insoluble fiber, resistant starch from high-amylose corn, has been used as a supplement and may contribute to improving insulin sensitivity and glycemic management[36][37][38] as well as promoting regularity[39] and possibly relief of diarrhea.[40][41][42] One preliminary finding indicates that resistant corn starch may reduce symptoms of ulcerative colitis.[43]

Inulins

Chemically defined as

nutritional supplements, and has potential health value as a prebiotic fermentable fiber.[45]

As a prebiotic fermentable fiber, inulin is

gut flora to yield short-chain fatty acids (see below), which increase absorption of calcium,[46] magnesium,[47] and iron.[48]

The primary disadvantage of inulin is its fermentation within the intestinal tract, possibly causing flatulence and digestive distress at doses higher than 15 grams/day in most people.[49] Individuals with digestive diseases have benefited from removing fructose and inulin from their diet.[50] While clinical studies have shown changes in the microbiota at lower levels of inulin intake, higher intake amounts may be needed to achieve effects on body weight.[51]

Vegetable gums

Vegetable gum fiber supplements are relatively new to the market. Often sold as a powder, vegetable gum fibers dissolve easily with no aftertaste. In preliminary clinical trials, they have proven effective for the treatment of irritable bowel syndrome.[52] Examples of vegetable gum fibers are guar gum and gum arabic.

Activity in the gut

Many molecules that are considered to be "dietary fiber" are so because humans lack the necessary enzymes to split the glycosidic bond and they reach the large intestine. Many foods contain varying types of dietary fibers, all of which contribute to health in different ways.

Dietary fibers make three primary contributions: bulking, viscosity and fermentation.[53] Different fibers have different effects, suggesting that a variety of dietary fibers contribute to overall health. Some fibers contribute through one primary mechanism. For instance, cellulose and wheat bran provide excellent bulking effects, but are minimally fermented. Alternatively, many dietary fibers can contribute to health through more than one of these mechanisms. For instance, psyllium provides bulking as well as viscosity.

Bulking fibers can be soluble (e.g. psyllium) or insoluble (e.g. cellulose and hemicellulose). They absorb water and can significantly increase stool weight and regularity. Most bulking fibers are not fermented or are minimally fermented throughout the intestinal tract.[53]

Viscous fibers thicken the contents of the intestinal tract and may attenuate the absorption of sugar, reduce sugar response after eating, and reduce lipid absorption (notably shown with cholesterol absorption). Their use in food formulations is often limited to low levels, due to their viscosity and thickening effects. Some viscous fibers may also be partially or fully fermented within the intestinal tract (guar gum, beta-glucan, glucomannan and pectins), but some viscous fibers are minimally or not fermented (modified cellulose such as methylcellulose and psyllium).[53]

Fermentable fibers are consumed by the

short-chain fatty acids as byproducts with wide-ranging physiological activities. Resistant starch, inulin, fructooligosaccharide and galactooligosaccharide are dietary fibers which are fully fermented. These include insoluble as well as soluble fibers. This fermentation influences the expression of many genes within the large intestine,[54] which affect digestive function and lipid and glucose metabolism, as well as the immune system, inflammation and more.[55]

Fiber fermentation produces gas (majorly carbon dioxide, hydrogen, and methane) and

short-chain fatty acids. Isolated or purified fermentable fibers are more rapidly fermented in the fore-gut and may result in undesirable gastrointestinal symptoms (bloating, indigestion and flatulence).[56]

Dietary fibers can change the nature of the contents of the

bile acids in the small intestine, making them less likely to re-enter the body; this in turn lowers cholesterol levels in the blood from the actions of cytochrome P450-mediated oxidation of cholesterol.[17]

Insoluble fiber is associated with reduced risk of diabetes,[58] but the mechanism by which this is achieved is unknown.[59] One type of insoluble dietary fiber, resistant starch, may increase insulin sensitivity in healthy people,[60][61] in type 2 diabetics,[62] and in individuals with insulin resistance, possibly contributing to reduced risk of type 2 diabetes.[38][37][36]

Not yet formally proposed as an essential

macronutrient, dietary fiber has importance in the diet, with regulatory authorities in many developed countries recommending increases in fiber intake.[3][57][63][64]

Physicochemical properties

Dietary fiber has distinct physicochemical properties. Most semi-solid foods, fiber and fat are a combination of gel matrices which are hydrated or collapsed with microstructural elements, globules, solutions or encapsulating walls. Fresh fruit and vegetables are cellular materials.[65][66][67]

  • The cells of cooked potatoes and legumes are gels filled with gelatinized starch granules. The cellular structures of fruits and vegetables are foams with a closed cell geometry filled with a gel, surrounded by cell walls which are composites with an amorphous matrix strengthened by complex carbohydrate fibers.
  • Particle size and interfacial interactions with adjacent matrices affect the mechanical properties of food composites.
  • Food polymers may be soluble in and/or plasticized by water.
  • The variables include chemical structure, polymer concentration, molecular weight, degree of chain branching, the extent of ionization (for electrolytes), solution pH, ionic strength and temperature.
  • Cross-linking of different polymers, protein and polysaccharides, either through chemical covalent bonds or cross-links through molecular entanglement or hydrogen or ionic bond cross-linking.
  • Cooking and chewing food alters these physicochemical properties and hence absorption and movement through the stomach and along the intestine[68]

Upper gastrointestinal tract

Following a meal, the stomach and upper gastrointestinal contents consist of

  • food compounds
  • complex lipids/
    hydrophobic
    phases
  • hydrophilic
    phases
  • solid, liquid, colloidal and gas bubble phases.[69]

Micelles are colloid-sized clusters of molecules which form in conditions as those above, similar to the critical micelle concentration of detergents.[70] In the upper gastrointestinal tract, these compounds consist of bile acids and di- and monoacyl

triacylglycerols and cholesterol.[70]

Two mechanisms bring nutrients into contact with the epithelium:

  1. intestinal contractions create turbulence; and
  2. convection currents direct contents from the lumen to the epithelial surface.[71]

The multiple physical phases in the intestinal tract slow the rate of absorption compared to that of the suspension solvent alone.

  1. Nutrients diffuse through the thin, relatively unstirred layer of fluid adjacent to the epithelium.
  2. Immobilizing of nutrients and other chemicals within complex polysaccharide molecules affects their release and subsequent absorption from the small intestine, an effect influential on the glycemic index.[71]
  3. Molecules begin to interact as their concentration increases. During absorption, water must be absorbed at a rate commensurate with the absorption of solutes. The transport of actively and passively absorbed nutrients across epithelium is affected by the unstirred water layer covering the microvillus membrane.[71]
  4. The presence of mucus or fiber, e.g., pectin or guar, in the unstirred layer may alter the viscosity and solute diffusion coefficient.[69]

Adding viscous polysaccharides to carbohydrate meals can reduce

post-prandial
blood glucose concentrations. Wheat and maize but not oats modify glucose absorption, the rate being dependent upon the particle size. The reduction in absorption rate with guar gum may be due to the increased resistance by viscous solutions to the convective flows created by intestinal contractions.

Dietary fiber interacts with pancreatic and enteric enzymes and their substrates. Human pancreatic enzyme activity is reduced when incubated with most fiber sources. Fiber may affect amylase activity and hence the rate of hydrolysis of starch. The more viscous polysaccharides extend the mouth-to-cecum transit time; guar, tragacanth and pectin being slower than wheat bran.[72]

Colon

The colon may be regarded as two organs,

  1. the right side (cecum and ascending colon), a fermenter.[73] The right side of the colon is involved in nutrient salvage so that dietary fiber, resistant starch, fat and protein are utilized by bacteria and the end-products absorbed for use by the body
  2. the left side (transverse, descending, and sigmoid colon), affecting continence.

The presence of bacteria in the colon produces an 'organ' of intense, mainly reductive, metabolic activity, whereas the liver is oxidative. The substrates utilized by the cecum have either passed along the entire intestine or are biliary excretion products. The effects of dietary fiber in the colon are on

  1. bacterial fermentation of some dietary fibers
  2. thereby an increase in bacterial mass
  3. an increase in bacterial enzyme activity
  4. changes in the water-holding capacity of the fiber residue after fermentation

Enlargement of the cecum is a common finding when some dietary fibers are fed and this is now believed to be normal physiological adjustment. Such an increase may be due to a number of factors, prolonged cecal residence of the fiber, increased bacterial mass, or increased bacterial end-products. Some non-absorbed carbohydrates, e.g. pectin, gum arabic, oligosaccharides and resistant starch, are fermented to short-chain fatty acids (chiefly acetic, propionic and n-butyric), and carbon dioxide, hydrogen and methane. Almost all of these short-chain fatty acids will be absorbed from the colon. This means that fecal short-chain fatty acid estimations do not reflect cecal and colonic fermentation, only the efficiency of absorption, the ability of the fiber residue to sequestrate short-chain fatty acids, and the continued fermentation of fiber around the colon, which presumably will continue until the substrate is exhausted. The production of short-chain fatty acids has several possible actions on the gut mucosa. All of the short-chain fatty acids are readily absorbed by the colonic mucosa, but only acetic acid reaches the systemic circulation in appreciable amounts. Butyric acid appears to be used as a fuel by the colonic mucosa as the preferred energy source for colonic cells.

Cholesterol metabolism

Dietary fiber may act on each phase of ingestion, digestion, absorption and excretion to affect cholesterol metabolism,[74] such as the following:

  1. Caloric energy of foods through a bulking effect
  2. Slowing of gastric emptying time
  3. A glycemic index type of action on absorption
  4. A slowing of bile acid absorption in the ileum so bile acids escape through to the cecum
  5. Altered or increased bile acid metabolism in the cecum
  6. Indirectly by absorbed short-chain fatty acids, especially propionic acid, resulting from fiber fermentation affecting the cholesterol metabolism in the liver.
  7. Binding of bile acids to fiber or bacteria in the cecum with increased fecal loss from the entero-hepatic circulation.

One action of some fibers is to reduce the reabsorption of bile acids in the ileum and hence the amount and type of bile acid and fats reaching the colon. A reduction in the reabsorption of bile acid from the ileum has several direct effects.

  1. Bile acids may be trapped within the lumen of the ileum either because of a high luminal viscosity or because of binding to a dietary fiber.[75]
  2. Lignin in fiber adsorbs bile acids, but the unconjugated form of the bile acids are adsorbed more than the conjugated form. In the ileum where bile acids are primarily absorbed the bile acids are predominantly conjugated.
  3. The enterohepatic circulation of bile acids may be altered and there is an increased flow of bile acids to the cecum, where they are deconjugated and 7alpha-dehydroxylated.
  4. These water-soluble form, bile acids e.g., deoxycholic and lithocholic are adsorbed to dietary fiber and an increased fecal loss of sterols, dependent in part on the amount and type of fiber.
  5. A further factor is an increase in the bacterial mass and activity of the ileum as some fibers e.g., pectin are digested by bacteria. The bacterial mass increases and cecal bacterial activity increases.
  6. The enteric loss of bile acids results in increased synthesis of bile acids from cholesterol which in turn reduces body cholesterol.

The fibers that are most effective in influencing sterol metabolism (e.g. pectin) are fermented in the colon. It is therefore unlikely that the reduction in body cholesterol is due to adsorption to this fermented fiber in the colon.

  1. There might be alterations in the end-products of bile acid bacterial metabolism or the release of short chain fatty acids which are absorbed from the colon, return to the liver in the portal vein and modulate either the synthesis of cholesterol or its catabolism to bile acids.
  2. The prime mechanism whereby fiber influences cholesterol metabolism is through bacteria binding bile acids in the colon after the initial deconjugation and dehydroxylation. The sequestered bile acids are then excreted in feces.[76]
  3. Fermentable fibers e.g., pectin will increase the bacterial mass in the colon by virtue of their providing a medium for bacterial growth.
  4. Other fibers, e.g., gum arabic, act as stabilizers and cause a significant decrease in serum cholesterol without increasing fecal bile acid excretion.

Fecal weight

Feces consist of a plasticine-like material, made up of water, bacteria, lipids, sterols, mucus and fiber.

  1. Feces are 75% water; bacteria make a large contribution to the dry weight, the residue being unfermented fiber and excreted compounds.
  2. Fecal output may vary over a range of between 20 and 280 g over 24 hours. The amount of feces egested a day varies for any one individual over a period of time.
  3. Of dietary constituents, only dietary fiber increases fecal weight.

Water is distributed in the colon in three ways:

  1. Free water which can be absorbed from the colon.
  2. Water that is incorporated into bacterial mass.
  3. Water that is bound by fiber.

Fecal weight is dictated by:

  1. the holding of water by the residual dietary fiber after fermentation.
  2. the bacterial mass.
  3. There may also be an added osmotic effect of products of bacterial fermentation on fecal mass.

Effects of fiber intake

Preliminary research indicates that fiber may affect health by different mechanisms.

Effects of fiber include:[1][2]

  • Increases food volume without increasing caloric content to the same extent as digestible carbohydrates, providing satiety which may reduce appetite (both insoluble and soluble fiber)
  • Attracts water and forms a viscous gel during digestion, slowing the emptying of the stomach, shortening intestinal transit time, shielding carbohydrates from enzymes, and delaying absorption of glucose,[1][77] which lowers variance in blood sugar levels (soluble fiber)
  • Lowers total and LDL cholesterol, which may reduce the risk of cardiovascular disease[1] (soluble fiber)
  • Regulates blood sugar, which may reduce glucose and insulin levels in diabetic patients and may lower risk of diabetes[1][78] (insoluble fiber)
  • Speeds the passage of foods through the digestive system, which facilitates regular defecation (insoluble fiber)
  • Adds bulk to the stool, which alleviates constipation (insoluble fiber)
  • Balances intestinal pH[79] and stimulates intestinal fermentation production of short-chain fatty acids.[1]

Fiber does not bind to minerals and vitamins and therefore does not restrict their absorption, but rather evidence exists that fermentable fiber sources improve absorption of minerals, especially calcium.[80][81][82]

Research

As of 2019, preliminary

type II diabetes.[2][4]

A 2011 study of 388,000 adults ages 50 to 71 for nine years found that the highest consumers of fiber were 22% less likely to die over this period.[83] In addition to lower risk of death from heart disease, adequate consumption of fiber-containing foods, especially grains, was also correlated with reduced incidence of infectious and respiratory illnesses, and, particularly among males, reduced risk of cancer-related death.[83]

A study of over 88,000 women did not show a statistically significant relationship between higher fiber consumption and lower rates of colorectal cancer or adenomas.[84] A 2010 study of 58,279 men found no relationship between dietary fiber and colorectal cancer.[85]

An extensive article exploring the link between dietary fiber and inflammatory bowel disease (IBD) described that dietary fiber has significant health benefits for IBD patients.[86]

A 2022 study over 20 years of Japanese adults aged 40–64 years showed a possible

inverse relationship between the intake of soluble fiber and the risk of developing dementia during aging.[87]

Dietary recommendations

European Union

According to the European Food Safety Authority (EFSA) Panel on Nutrition, Novel Foods and Food Allergens (NDA), which deals with the establishment of Dietary Reference Values for carbohydrates and dietary fibre, "based on the available evidence on bowel function, the Panel considers dietary fibre intakes of 25 g per day to be adequate for normal laxation in adults".[88][89]

United States

Current recommendations from the United States National Academy of Medicine (NAM) (formerly Institute of Medicine) of the National Academy of Sciences state that for Adequate Intake, adult men ages 19–50 consume 38 grams of dietary fiber per day, men 51 and older 30 grams, women ages 19–50 to consume 25 grams per day, women 51 and older 21 grams. These are based on three studies observing that people in the highest quintile of fiber intake consumed a median of 14 grams of fiber per 1,000 Calories and had the lowest risk of coronary heart disease, especially for those who ate more cereal fiber.[2][90][3]

The United States Academy of Nutrition and Dietetics (AND, previously ADA) reiterates the recommendations of the NAM.[91] A 1995 research team's recommendation for children is that intake should equal age in years plus 5 g/day (e.g., a 4-year-old should consume 9 g/day).[92][93] The NAM's current recommendation for children is 19 g/day for age 1-3 years and 25 g/day for age 4-8 years.[2] No guidelines have yet been established for the elderly or very ill. Patients with current constipation, vomiting, and abdominal pain should see a physician. Certain bulking agents are not commonly recommended with the prescription of opioids because the slow transit time mixed with larger stools may lead to severe constipation, pain, or obstruction.

On average, North Americans consume less than 50% of the dietary fiber levels recommended for good health. In the preferred food choices of today's youth, this value may be as low as 20%, a factor considered by experts as contributing to the

coronary heart disease[96] – and also reduce the risk of some types of cancer.[97]

Viscous fiber sources gaining FDA approval are:[2]

Other examples of bulking fiber sources used in functional foods and supplements include cellulose, guar gum and xanthan gum. Other examples of fermentable fiber sources (from plant foods or biotechnology) used in functional foods and supplements include resistant starch, inulin, fructans, fructooligo saccharides, oligo- or polysaccharides, and resistant dextrins, which may be partially or fully fermented.

Consistent intake of fermentable fiber may reduce the risk of chronic diseases.[98][99][100] Insufficient fiber in the diet can lead to constipation.[101]

United Kingdom

In 2018, the British Nutrition Foundation issued a statement to define dietary fiber more concisely and list the potential health benefits established to date, while increasing its recommended daily minimum intake to 30 grams for healthy adults.[102][1] Statement: 'Dietary fibre' has been used as a collective term for a complex mixture of substances with different chemical and physical properties which exert different types of physiological effects.

The use of certain analytical methods to quantify dietary fiber by nature of its indigestin ability results in many other indigestible components being isolated along with the carbohydrate components of dietary fiber. These components include resistant starches and oligo saccharides along with other substances that exist within the plant cell structure and contribute to the material that passes through the digestive tract. Such components are likely to have physiological effects.

Diets naturally high in fiber can be considered to bring about several main physiological consequences:[1]

Fiber is defined by its physiological impact, with many heterogenous types of fibers. Some fibers may primarily impact one of these benefits (i.e., cellulose increases fecal bulking and prevents constipation), but many fibers impact more than one of these benefits (i.e., resistant starch increases bulking, increases colonic fermentation, positively modulates colonic microflora and increases satiety and insulin sensitivity).[16][11] The beneficial effects of high fiber diets are the summation of the effects of the different types of fiber present in the diet and also other components of such diets.

Defining fiber physiologically allows recognition of indigestible carbohydrates with structures and physiological properties similar to those of naturally occurring dietary fibers.[1]

Fermentation

The

Cereals & Grains Association
has defined soluble fiber this way: "the edible parts of plants or similar carbohydrates resistant to digestion and absorption in the human small intestine with complete or partial fermentation in the large intestine."[103]

In this definition, "edible parts of plants" indicates that some parts of a plant that are eaten—skin, pulp, seeds, stems, leaves, roots—contain fiber. Both insoluble and soluble sources are in those plant components. "Carbohydrates" refers to complex carbohydrates, such as long-chained sugars also called

colon within which additional nutrient absorption occurs through the process of fermentation. Fermentation occurs through the action of colonic bacteria on the food mass, producing gases and short-chain fatty acids. These short-chain fatty acids have been shown to have significant health properties.[104] They include butyric, acetic (ethanoic), propionic, and valeric
acids.

As an example of fermentation, shorter-chain carbohydrates (a type of fiber found in legumes) cannot be digested, but are changed via fermentation in the colon into short-chain fatty acids and gases (which are typically expelled as flatulence).

According to a 2002 journal article,[98] fiber compounds with partial or low fermentability include:

fiber compounds with high fermentability include:

Short-chain fatty acids

When fermentable fiber is fermented, short-chain fatty acids (SCFA) are produced.[18] SCFAs are involved in numerous physiological processes promoting health, including:[104]

SCFAs that are absorbed by the colonic mucosa pass through the colonic wall into the

portal circulation (supplying the liver), and the liver transports them into the general circulatory system
.

Overall, SCFAs affect major regulatory systems, such as blood glucose and lipid levels, the colonic environment, and intestinal immune functions.[106][107]

The major SCFAs in humans are butyrate, propionate, and acetate, where butyrate is the major energy source for colonocytes, propionate is destined for uptake by the liver, and acetate enters the peripheral circulation to be metabolized by peripheral tissues.[citation needed]

FDA-approved health claims

The United States FDA allows manufacturers of foods containing 1.7 g per serving of psyllium husk soluble fiber or 0.75 g of

heart disease.[12]

The FDA statement template for making this claim is:

Soluble fiber from foods such as [name of soluble fiber source, and, if desired, name of food product], as part of a diet low in saturated fat and cholesterol, may reduce the risk of heart disease. A serving of [name of food product] supplies __ grams of the [necessary daily dietary intake for the benefit] soluble fiber from [name of soluble fiber source] necessary per day to have this effect.[12]

Eligible sources of soluble fiber providing beta-glucan include:

  • Oat bran
  • Rolled oats
  • Whole oat flour
  • Oatrim
  • Whole grain barley and dry milled barley
  • Soluble fiber from psyllium husk with purity of no less than 95%

The allowed label may state that diets low in saturated fat and cholesterol and that include soluble fiber from certain of the above foods "may" or "might" reduce the risk of heart disease.

As discussed in FDA regulation 21 CFR 101.81, the daily dietary intake levels of soluble fiber from sources listed above associated with reduced risk of

coronary heart disease
are:

  • 3 g or more per day of beta-glucan soluble fiber from either whole oats or barley, or a combination of whole oats and barley
  • 7 g or more per day of soluble fiber from psyllium seed husk.[108]

Soluble fiber from consuming grains is included in other allowed health claims for lowering risk of some types of cancer and heart disease by consuming fruit and vegetables (21 CFR 101.76, 101.77, and 101.78).[12]

In December 2016, FDA approved a qualified health claim that consuming resistant starch from high-

insulin sensitivity. The allowed claim specified: "High-amylose maize resistant starch may reduce the risk of type 2 diabetes. FDA has concluded that there is limited scientific evidence for this claim."[109] In 2018, the FDA released further guidance on the labeling of isolated or synthetic dietary fiber to clarify how different types of dietary fiber should be classified.[110]

See also

References

  1. ^ a b c d e f g h i j k l m "Dietary fibre". British Nutrition Foundation. 2018. Archived from the original on 26 July 2018. Retrieved 26 July 2018.
  2. ^ a b c d e f g h i j k l m "Fiber". Linus Pauling Institute, Oregon State University. March 2019. Retrieved 3 February 2021.
  3. ^ .
  4. ^ .
  5. .
  6. .
  7. ^ .
  8. .
  9. .
  10. .
  11. ^ .
  12. ^ a b c d FDA/CFSAN A Food Labeling Guide: Appendix C Health Claims, April 2008 Archived 12 April 2008 at the Wayback Machine
  13. PMID 30239559
    .
  14. .
  15. .
  16. ^ .
  17. ^ .
  18. ^ .
  19. .
  20. ^ a b "Search, USDA Food Composition Databases". Nutrient Data Laboratory. USDA National Nutrient Database, US Department of Agriculture, Standard Release 28. 2015. Archived from the original on 22 April 2019. Retrieved 18 November 2017.
  21. ^ U.S. Government Printing Office—Electronic Code of Federal Regulations Archived 13 August 2009 at the Wayback Machine
  22. ^ U.S. Food and Drug Administration—Guidelines for Determining Metric Equivalents of Household Measures
  23. PMID 27559560
    .
  24. ^ "Nutrition and healthy eating: Fiber". Mayo Clinic. 2017. Retrieved 18 November 2017.
  25. S2CID 31159565
    .
  26. .
  27. .
  28. .
  29. .
  30. .
  31. .
  32. .
  33. .
  34. .
  35. .
  36. ^ .
  37. ^ .
  38. ^ .
  39. .
  40. .
  41. .
  42. ^ James S. "P208. Abnormal fibre utilisation and gut transit in ulcerative colitis in remission: A potential new target for dietary intervention". Presentation at European Crohn's & Colitis Organization meeting, Feb 16–18, 2012 in Barcelona, Spain. European Crohn's & Colitis Organization. Archived from the original on 27 September 2016. Retrieved 25 September 2016.
  43. S2CID 1327336
    .
  44. .
  45. .
  46. .
  47. .
  48. .
  49. .
  50. .
  51. .
  52. ^ .
  53. .
  54. .
  55. .
  56. ^ .
  57. ^ "Foods that spike a patient's blood glucose are not what you think". American Medical Association. Retrieved 14 October 2020.
  58. PMID 18287346
    .
  59. .
  60. .
  61. .
  62. .
  63. PMID 18347661. Archived from the original
    on 11 July 2012.
  64. ^ Hermansson AM. Gel structure of food biopolymers In: Food Structure, its creation and evaluation.JMV Blanshard and JR Mitchell, eds. 1988 pp. 25–40 Butterworths, London.
  65. ^ Rockland LB, Stewart GF. Water Activity: Influences on Food Quality. Academic Press, New York. 1991
  66. PMID 1310375
    .
  67. ^ Eastwood MA. The physiological effect of dietary fiber: an update. Annual Review Nutrition, 1992:12 : 19–35
  68. ^ a b Eastwood MA. The physiological effect of dietary fiber: an update. Annual Review Nutrition. 1992. 12:19–35.
  69. ^ a b Carey MC, Small DM and Bliss CM. Lipid digestion and Absorption. Annual Review of Physiology. 1983. 45:651–77.
  70. ^
    PMID 2840277
    .
  71. ^ Schneeman BO, Gallacher D. Effects of dietary fibre on digestive enzyme activity and bile acids in the small intestine. Proc Soc Exp Biol Med 1985; 180 409–14.
  72. ^ Hellendoorn EW 1983 Fermentation as the principal cause of the physiological activity of indigestible food residue. In: Spiller GA (ed) Topics in dietary fiber research. Plenum Press, New York, pp. 127–68
  73. PMID 9925120
    .
  74. .
  75. .
  76. .
  77. . National Academies Press. pp. 380–82.
  78. . Retrieved 22 April 2009.
  79. .
  80. .
  81. .
  82. ^ .
  83. .
  84. .
  85. .
  86. .
  87. .
  88. ^ Maragkoudakis P (20 June 2017). "Dietary Fibre". EU Science Hub. Joint Research Centre. Retrieved 21 December 2019.
  89. . Retrieved 8 June 2021.
  90. ^ "Fiber". www.eatright.org. Retrieved 11 October 2019.
  91. S2CID 39644070
    . Retrieved 7 June 2021.
  92. ^ Wilkinson Enns, Cecilia; Mickle, Sharon J.; Goldman, Joseph D. (2002). "Trends in Food and Nutrient Intakes by Children in the United States". Family Economics and Nutrition Review. 14 (1): 64. Retrieved 7 June 2021.
  93. S2CID 37892002
    .
  94. ^ Aubrey A (23 October 2017). "The FDA Will Decide Whether 26 Ingredients Count As Fiber". National Public Radio. Retrieved 19 November 2017.
  95. ^ Health claims: fruits, vegetables, and grain products that contain fiber, particularly soluble fiber, and risk of coronary heart disease. Electronic Code of Federal Regulations: US Government Printing Office, current as of 20 October 2008
  96. ^ Health claims: fiber-containing grain products, fruits, and vegetables and cancer. Electronic Code of Federal Regulations: US Government Printing Office, current as of 20 October 2008
  97. ^
    PMID 33451232
    .
  98. .
  99. .
  100. ^ "What Is Constipation?". WebMD. 2017. Retrieved 19 November 2017.
  101. .
  102. ^ AACC International. "The Definition of Dietary Fiber" (PDF). Archived from the original (PDF) on 28 September 2007. Retrieved 12 May 2007.
  103. ^
    S2CID 46228892
    .
  104. .
  105. .
  106. .
  107. ^ Soluble Fiber from Certain Foods and Risk of Coronary Heart Disease, U.S. Government Printing Office, Electronic Code of Federal Regulations, Title 21: Food and Drugs, part 101: Food Labeling, Subpart E, Specific Requirements for Health Claims, 101.81 [1] Archived 1 June 2008 at the Wayback Machine
  108. ^ Balentine D (12 December 2016). "Petition for a Health Claim for High-Amylose Maize Starch (Containing Type-2 Resistant Starch) and Reduced Risk Type 2 Diabetes Mellitus (Docket Number FDA2015-Q-2352)" (PDF). Office of Nutrition and Food Labeling, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration. Retrieved 22 March 2018.
  109. ^ Elaine Watson (14 June 2018). "FDA unveils dietary fibers guidance: Good news for inulin, polydextrose, some gray areas remaining". FoodNavigatorUSA.com. Retrieved 24 June 2019.

Further reading

  • Yusuf, K.; Saha, S.; Umar, S. (26 May 2022). "Health Benefits of Dietary Fiber for the Management of Inflammatory Bowel Disease". Biomedicines, 10(6: Novel Therapeutic Approaches in Inflammatory Bowel Diseases 2.0 (special issue)), 1242. .

External links