Digital-to-analog converter

Source: Wikipedia, the free encyclopedia.

8-channel Cirrus Logic CS4382 digital-to-analog converter as used in a sound card.

In electronics, a digital-to-analog converter (DAC, D/A, D2A, or D-to-A) is a system that converts a digital signal into an analog signal. An analog-to-digital converter (ADC) performs the reverse function.

There are several DAC

sampling frequency
and others. Digital-to-analog conversion can degrade a signal, so a DAC should be specified that has insignificant errors in terms of the application.

DACs are commonly used in

music players to convert digital data streams into analog audio signals. They are also used in televisions and mobile phones to convert digital video data into analog video signals
. These two applications use DACs at opposite ends of the frequency/resolution trade-off. The audio DAC is a low-frequency, high-resolution type while the video DAC is a high-frequency low- to medium-resolution type.

Due to the complexity and the need for precisely matched

digital circuits
.

Discrete DACs (circuits constructed from multiple discrete

electronic components instead of a packaged IC) would typically be extremely high-speed low-resolution power-hungry types, as used in military radar systems. Very high-speed test equipment, especially sampling oscilloscopes
, may also use discrete DACs.

Overview

Sampled signal.

A DAC converts an

abstract finite-precision number (usually a fixed-point binary number) into a physical quantity (e.g., a voltage or a pressure). In particular, DACs are often used to convert finite-precision time series data to a continually varying physical signal
.

Provided that a signal's bandwidth meets the requirements of the

quantization error (rounding error), which manifests as low-level noise. These errors can be kept within the requirements of the targeted application (e.g. under the limited dynamic range of human hearing
for audio applications).

Applications

A simplified functional diagram of an 8-bit DAC

DACs and ADCs are part of an

speaker
, which finally produces sound.

Audio

Top-loading CD player (top) and external digital-to-analog converter (bottom) from the same company.
An external DAC (1990s) from Audio Alchemy as an add-on for CD players, having only about 12 cm width, intended to improve the sound of older or less expensive players.

Most modern audio signals are stored in digital form (for example

digital music players, and PC sound cards
.

Specialist standalone DACs can also be found in high-end

line-level output that can then be fed into an amplifier
to drive speakers.

Similar digital-to-analog converters can be found in

USB speakers, and in sound cards
.

In voice over IP applications, the source must first be digitized for transmission, so it undergoes conversion via an ADC and is then reconstructed into analog using a DAC on the receiving party's end.

Video

Video sampling tends to work on a completely different scale altogether thanks to the highly nonlinear response both of cathode ray tubes (for which the vast majority of digital video foundation work was targeted) and the human eye, using a "gamma curve" to provide an appearance of evenly distributed brightness steps across the display's full dynamic range - hence the need to use RAMDACs in computer video applications with deep enough color resolution to make engineering a hardcoded value into the DAC for each output level of each channel impractical (e.g. an Atari ST or Sega Genesis would require 24 such values; a 24-bit video card would need 768...). Given this inherent distortion, it is not unusual for a television or video projector to truthfully claim a linear contrast ratio (difference between darkest and brightest output levels) of 1000:1 or greater, equivalent to 10 bits of audio precision even though it may only accept signals with 8-bit precision and use an LCD panel that only represents 6 or 7 bits per channel.

Video signals from a digital source, such as a computer, must be converted to analog form if they are to be displayed on an analog monitor. As of 2007, analog inputs were more commonly used than digital, but this changed as

memory (RAM), which contains conversion tables for gamma correction, contrast and brightness, to make a device called a RAMDAC
.

Digital potentiometer

A device that is distantly related to the DAC is the

digitally controlled potentiometer
, used to control an analog signal digitally.

Mechanical

IBM Selectric typewriter uses a mechanical digital-to-analog converter to control its typeball.

A one-bit mechanical actuator assumes two positions: one when on, another when off. The motion of several one-bit actuators can be combined and weighted with a whiffletree mechanism to produce finer steps. The IBM Selectric typewriter uses such a system.[1]

Communications

DACs are widely used in modern communication systems enabling the generation of digitally-defined transmission signals. High-speed DACs are used for mobile communications and ultra-high-speed DACs are employed in optical communications systems.

Types

The most common types of electronic DACs are:[2]

Performance

The most important characteristics of a DAC are:[citation needed]

Resolution
The number of possible output levels the DAC is designed to reproduce. This is usually stated as the number of bits it uses, which is the binary logarithm of the number of levels. For instance a 1-bit DAC is designed to reproduce 2 (21) levels while an 8-bit DAC is designed for 256 (28) levels. Resolution is related to the effective number of bits which is a measurement of the actual resolution attained by the DAC. Resolution determines color depth in video applications and audio bit depth in audio applications.
Maximum
sampling rate
The maximum speed at which the DACs circuitry can operate and still produce correct output. The Nyquist–Shannon sampling theorem defines a relationship between this and the bandwidth of the sampled signal.
Monotonicity
The ability of a DAC's analog output to move only in the direction that the digital input moves (i.e., if the input increases, the output doesn't dip before asserting the correct output.) This characteristic is very important for DACs used as a low-frequency signal source or as a digitally programmable trim element.[citation needed]
Total harmonic distortion and noise (THD+N)
A measurement of the distortion and noise introduced to the signal by the DAC. It is expressed as a percentage of the total power of unwanted
harmonic distortion
and noise that accompanies the desired signal.
Dynamic range
A measurement of the difference between the largest and smallest signals the DAC can reproduce expressed in decibels. This is usually related to resolution and noise floor.

Other measurements, such as phase distortion and jitter, can also be very important for some applications, some of which (e.g. wireless data transmission, composite video) may even rely on accurate production of phase-adjusted signals.

Non-linear PCM encodings (A-law / μ-law, ADPCM, NICAM) attempt to improve their effective dynamic ranges by using logarithmic step sizes between the output signal strengths represented by each data bit. This trades greater quantization distortion of loud signals for better performance of quiet signals.

Figures of merit

  • Static performance:
  • Frequency domain performance
    • Spurious-free dynamic range (SFDR) indicates in dB the ratio between the powers of the converted main signal and the greatest undesired spur.[8]
    • Signal-to-noise and distortion (SINAD) indicates in dB the ratio between the powers of the converted main signal and the sum of the noise and the generated harmonic spurs[8]
    • i-th harmonic distortion (HDi) indicates the power of the i-th harmonic of the converted main signal
    • Total harmonic distortion (THD) is the sum of the powers of all the harmonics of the input signal[8]
    • If the maximum DNL is less than 1 LSB, then the D/A converter is guaranteed to be monotonic. However, many monotonic converters may have a maximum DNL greater than 1 LSB.[8]
  • Time domain performance:
    • Glitch impulse area (glitch energy)[8]

See also

  • I²S – Serial interface for digital audio

References

  1. ^ Brian Brumfield (2014-09-02). "Selectric Repair 10-3A Input: Keyboard". Archived from the original on 2015-12-29 – via YouTube.
  2. ^ "Data Converter Architectures" (PDF). Analog-Digital Conversion. Analog Devices. Archived (PDF) from the original on 2017-08-30. Retrieved 2017-08-30.
  3. ^ "Binary Weighted Resistor DAC". Electronics Tutorial. Retrieved 2018-09-25.
  4. ^ "Data Converter Architectures", p. 3.29.
  5. ^ Walt Kester, Basic DAC Architectures I: String DACs and Thermometer (Fully Decoded) DACs (PDF), Analog Devices, archived (PDF) from the original on 2015-05-03
  6. ^ "Multiplying DACs: Flexible Building Blocks" (PDF). Analog Devices. 2010. Archived (PDF) from the original on 2011-05-16. Retrieved 2012-03-29.
  7. S2CID 199586286
    .
  8. ^ a b c d e f g h i "ADC and DAC Glossary". Maxim. Archived from the original on 2007-03-08.

Further reading

External links