Direct-ethanol fuel cell

Source: Wikipedia, the free encyclopedia.

Direct-ethanol fuel cells or DEFCs are a category of

PEM.[1]

Advantages

DEFC uses Ethanol in the fuel cell instead of the more toxic methanol. Ethanol is an attractive alternative to methanol because it comes with a supply chain that's already in place. Ethanol also remains the easier fuel to work with for widespread use by consumers.

catalysts
are some of the most efficient materials for the oxidation of small organic molecules.

Reaction

flowchart of the reaction in a DEFC

The DEFC, similar to the

catalyst layer to form carbon dioxide. Water is consumed at the anode and is produced at the cathode. Protons (H+) are transported across the proton exchange membrane to the cathode where they react with oxygen to produce water. Electrons
are transported through an external circuit from anode to cathode, providing power to connected devices.

The half-reactions are:

Equation
Anode
oxidation
Cathode
reduction
Overall reaction
redox reaction

Issues

Platinum-based catalysts are expensive, so practical exploitation of ethanol as fuel for a

precious metals
. In practice tiny metal particles are fixed onto a substrate in such a way that they produce a very active catalyst.

A polymer acts as electrolyte. The charge is carried by the hydrogen ion (proton). The liquid ethanol (C2H5OH) is oxidized at the anode in the presence of water, generating CO2, hydrogen ions and electrons. Hydrogen ions travel through the electrolyte. They react at the cathode with oxygen from the air and the electrons from the external circuit forming water.

Bio-Ethanol based fuel cells may improve the well-to-wheel balance of this biofuel because of the increased conversion rate of the fuel cell compared to the internal combustion engine. But real world figures may be only achieved in some years since the development of direct methanol and ethanol fuel cells is lagging behind hydrogen powered fuel cells.[3]

Recent accomplishments

On 13 May 2007 a team from the University of Applied Sciences in Offenburg presented the world's first vehicle powered by a DEFC at Shell's Eco-marathon in France. The car "Schluckspecht" completed a successful test drive on Nogaro Circuit, powered by a DEFC stack giving an output voltage of 20 to 45 V (depending on load).[4]

Various prototypes of Direct Ethanol Fuel Cell Stack mobile phone chargers have been built[5] featuring voltages from 2V to 7V and powers from 800 mW to 2W[6] were built and tested.

Sources

See also

References

Further reading