Do-it-yourself biology

Source: Wikipedia, the free encyclopedia.

Do-it-yourself biology (DIY biology, DIY bio) is a

open-science innovation, or for profit, to start a business
.

Other terms are also associated with the do-it-yourself biology community. The terms biohacking and wetware hacking emphasize the connection to

grinder body modification community, which is considered related but distinct from the do-it-yourself biology movement.[3] The term biopunk emphasizes the techno-progressive
, political, and artistic elements of the movement.

History

The term "biohacking" as well as the concept of do-it-yourself biology has been known as early as 1988.[4][5][6]

Biohacking entered the San Francisco programmer and maker communities as early as 2005, through simple demonstrations of basic experiments. As DIYbio experiments became the focus of SuperHappyDevHouse hackers, the hobby gained additional momentum.

In 2005 Rob Carlson wrote in an article in Wired: "The era of garage biology is upon us. Want to participate? Take a moment to buy yourself a lab on eBay."[7] He then set up a garage lab the same year, working on a project he had previously worked at the Molecular Sciences Institute in Berkeley, California.[8]

In 2008, the DIYbio organization was founded by Jason Bobe and Mackenzie Cowell and its first meeting held.[9]

In 2010, Genspace opened the first community biology lab,[10] Ten months later it was followed by BioCurious,[11] and Victoria Makerspace. Many other labs and organizations followed, including but not limited to Counter Culture Labs in Oakland, CA, Baltimore Underground Science Space in Baltimore, MD, TheLab in Los Angeles, CA and Denver Biolabs in Denver, CO.

It has been estimated that in 2014 there have been 50 DIY biology labs around the world.[12]: 119 

In 2016, the first conference to focus specifically on biohacking was announced to take place in September in Oakland, CA.[13]

Aspects

The DIYbio movement seeks to revise the notion that one must be an academic with an advanced degree to make any significant contribution to the biology community. It allows large numbers of small organizations and individuals to participate in research and development, with spreading knowledge a higher priority than turning profits.

better source needed][17][18] and sleep.[19]

The motivations for DIY biology include (but aren't limited to) lowered costs, entertainment, medicine, biohacking, life extension, and education. Recent work combining

scientific instruments have been developed.[20]

Community laboratory space

Many organizations maintain a laboratory akin to a wet-lab

makerspace, providing equipment and supplies for members. Many organizations also run classes and provide training. For a fee (usually between $50 and $100), members can join some spaces and do experiments on their own.[21][22][23]

Open source equipment

The DIY biology movement attempts to make available the tools and resources necessary for anyone, including non-professionals, to conduct biological engineering. One of the first pieces of open source laboratory equipment developed was the Dremelfuge by Irish biohacker Cathal Garvey, which uses a 3D printed tube holder attached to a Dremel rotary tool to spin tubes at high speeds, replacing often expensive centrifuges.[24] Many other devices like PCR machines have been recreated extensively.[25][26][27] In recent times, more complex devices have been created such as the OpenDrop digital microfluidics platform[28] and the DIY NanoDrop[29] both developed by GaudiLabs. Opentrons makes open-source software, affordable lab robots, and got its start as a DIY biology collaboration at Genspace.[30] Incuvers makes telemetric chambers for cellular research that are affordable and allow for complete customizability of their environments. OpenCell, a London based biotech lab provider hosts regular biohackathons to help encourage more opensource development.[31]

Advocacy

Most advocacy in biohacking is about the safety, accessibility and future legality of experimentation. Todd Kuiken of the

Josiah Zayner has proposed that safety is inherent in biohacking and that accessibility should be the foremost concern as there is large underrepresentation of social and ethnic minorities in biohacking.[33]

Research topics

Many biohacking projects revolve around the modification of life and molecular and genetic engineering.[34]

Bioinformatics

Bioinformatics is another popular target for do-it-yourself biology research. As in other fields, many programming languages can be used in DIY biology, but most of the languages that are used are those with large bioinformatics libraries.

Examples include

BioPython, which use the languages Perl and Python
, respectively.

Genetic engineering

Genetic Engineers are a subculture of biohackers as one of the most accessible forms of biohacking is through engineering microorganisms or plants. Experiments can range from using plasmids to fluorescent bacteria, controlling gene expression using light in bacteria,[35] even using CRISPR to engineer the genome of bacteria or yeast.[36]

Medicine

Restricted access to medical care and medicine has pushed biohackers to start experimenting in medically related fields. The

Open Insulin project aims to make the recombinant protein insulin more accessible by creating an open source protocol for expression and purification.[37] Other experiments that have involved medical treatments include a whole body microbiome transplant[38] and the creation of open source artificial pancreases[39] for diabetics, such as OpenAPS, Loop[40] and AndroidAPS.[41]

Implants

Grinders are a subculture of biohackers that focus on implanting technology[42] or introducing chemicals[43] into the body to enhance or change their bodies' functionality.

Some biohackers can now sense which direction they face using a magnetic implant that vibrates against the skin.[44]

Art

In 2000, controversial and self-described "

liberal eugenics) and Cult of the New Eve (In order to analyze how, in their words, "Science is the institution of authority regarding the production of knowledge, and tends to replace this particular social function of conventional Christianity in the west").[46]

Heather Dewey-Hagborg is an information artist and biohacker who uses genomic DNA left behind by people as a starting point for creating lifelike, computer-generated, 3-D portraits.[47][48]

Criticism and concerns

Biohacking experiences many of the same criticisms as

post-9/11 anti-terrorism powers to intimidate artists and others who use their art to criticize society.[49]

Existing regulations are not specific to this field, so that the possibility of pathogenic organisms being created and released unintentionally or intentionally by biohackers has become a matter of concern, for example, in the spirit of the re-creation of the 1917

DIYbio organized conferences to attempt to create codes of ethics for biohackers.[55]

A 2007 ETC Group report warns that the danger of this development is not just bioterror, but "bio-error".[56]

While detractors argue that do-it-yourself biologists need some sort of supervision, enthusiasts argue that uniform supervision is impossible and the best way to prevent accidents or malevolence is to encourage a culture of transparency, where, in essence, do-it-yourself biologists would be peer reviewed by other biohackers.

DIYbio argues that fear of potential hazards should be met with increased research and education rather than closing the door on the profound positive impacts that distributed biological technology will have on human health, the environment, and the standard of living around the world.[58] Due to the lack of precedent regarding such a business model, the DIYbio founders see this as an opportunity to be innovators in regulatory and safety policy.[9]

Groups and organizations

See also

References

  1. ^ "Do-it-yourself biology shows safety risks of an open innovation movement". Brookings. Retrieved 2024-03-15.
  2. ^ Hicks, Jennifer (2014-03-15). "The Biohacking Hobbyist". Forbes. Retrieved 2016-06-19.
  3. ^ Michels, Spencer (2014-09-23). "What is biohacking and why should we care?". PBS NewsHour. Retrieved 2015-10-30.
  4. ^ Katz, Sylvan (6 January 1990). "Forum: Roses are black, violets are green – The emergence of amateur genetic engineers". New Scientist. Retrieved 2015-10-25.
  5. ISSN 0955-6621
    .
  6. . Retrieved 2015-10-25.
  7. ^ Carlson, Rob (May 2005). "Splice It Yourself: Who needs a geneticist? Build your own lab". Wired.
  8. ^
    PMID 20930820
    .
  9. ^ a b "PBS News Hour". YouTube. 31 Dec 2008. Archived from the original on 2021-12-20.
  10. ^ Mosher, Dave (2010-12-16). "DIY Biotech Hacker Space Opens in NYC". Wired. Retrieved 2017-07-25.
  11. ^ "BioCurious Officially Opens — Test DNA, Build Equipment, Find a Co-founder and More…". Make Magazine. 2011-10-14. Retrieved 2017-07-25.
  12. .
  13. ^ "Biohack the Planet Conference". Biohack the Planet. Retrieved 2016-06-19.
  14. ^ "Rob Carlson on synthetic biology". The Economist. Archived from the original on 2011-10-09.
  15. PMID 26098910
    .
  16. ^ Singh, Honey (2 February 2020). "How to Biohack Your Metabolism?". Do BioHacking.
  17. PMID 27760374
    .
  18. .
  19. .
  20. .
  21. ^ "BUGSS Membership". BUGSS. Archived from the original on 2017-08-25. Retrieved 2016-06-17.
  22. ^ "Biocurious Membership". Biocurious. Archived from the original on 2017-05-10. Retrieved 2016-06-17.
  23. ^ "Counter Culture Labs Membership". Counter Culture Labs. Retrieved 2016-06-17.
  24. ^ "DremelFuge – A One-Piece Centrifuge for Rotary Tools". Thingiverse. 2009-12-23. Retrieved 2016-06-17.
  25. ^ Jankowski, Tito (2011-07-06). "DNA is now DIY: OpenPCR ships worldwide". Make.
  26. ^ "Pocket PCR for pennies". LavaAmp. Archived from the original on 2015-11-06. Retrieved 2015-10-26.
  27. ^ "Coffee Cup – PCR Thermocycler costing under 350$". Instructables. 2009-06-13. Retrieved 2016-06-17.
  28. ^ "OpenDrop". OpenDrop. Retrieved 2016-06-17.
  29. ^ "DIY NanoDrop". DIY NanoDrop. Hackteria. Retrieved 2016-06-17.
  30. ^ Landoni, Boris (11 July 2014). "Interview to Open Trons | Open Electronics". Open Source Electronics. Retrieved 1 November 2016.
  31. ^ "Open Cell is hosting monthly biohackathons to develop equipment, software and products to make better and more affordable biolaboratories". OpenCell.bio. OpenCell. Retrieved 2019-08-17.
  32. PMID 26961642
    .
  33. ^ Yin, Steph (2016-05-03). "Is DIY Kitchen CRISPR A Class Issue?". Popular Science. Retrieved 2016-06-19.
  34. ^ Hicks, Jennifer (2014-03-15). "The Biohacking Hobbyist". Forbes. Retrieved 2016-06-19.
  35. ^ "Biocurious Meetup". Meetup. 2016-06-25. Retrieved 2016-06-17.
  36. ^ Krieger, Lisa M. (2016-01-11). "Bay Area biologist's gene-editing kit lets do-it-yourselfers play God at the kitchen table". San Jose Mercury News. Retrieved 2016-06-17.
  37. ^ Ossola, Alexandra (2015-11-18). "These Biohackers Are Creating Open-Source Insulin". Popular Science. Retrieved 2016-06-17.
  38. ^ Duhaime-Ross, Arielle (2016-05-04). "A Bitter Pill". The Verge.
  39. ^ Linebaugh, Kate (2016-05-09). "Tech-savvy Families use homebuilt diabetes device". Wall Street Journal.
  40. ^ "LoopDocs". loopkit.github.io. Retrieved 2022-07-25.
  41. ^ "Welcome to the AndroidAPS documentation — AndroidAPS 3.0 documentation". androidaps.readthedocs.io. Retrieved 2022-07-25.
  42. ^ Neifer, Anna (2015-11-09). "Biohackers are implanting LEDs under their skin". Motherboard.
  43. ^ Dvorsky, George (2016-03-27). "This Biohacker Used Eyedrops To Give Himself Temporary Night Vision". Gizmodo.
  44. ^ Thaddeus-Johns, Josie (2017-01-06). "Meet the first humans to sense where north is". The Guardian. Retrieved 2018-06-02.
  45. ^ Dickey, Christopher (April 2001). "I Love My Glow Bunny". {{cite magazine}}: Cite magazine requires |magazine= (help)
  46. ^ "Critical Art Ensemble". critical-art.net. Archived from the original on 2015-11-13. Retrieved 2015-11-20.
  47. ^ Jenkins, Mark (2013-09-18). "A 'Cyber' exhibit as timely as the news". Washington Post. p. E18.
  48. ^ Krulwich, Robert (2013-06-28). "Artist plays detective: Can I reconstruct a face from a piece of hair?". NPR. Retrieved 7 August 2014.
  49. ^ The Associated Press (October 29, 2007). "Scientist pleads guilty to mailing bacteria for 'bio-art'". First Amendment Center. Archived from the original on 2009-02-10.
  50. PMID 16208326
    .
  51. ^ Zimmer, Carl (March 5, 2012). "Amateurs Are New Fear in Creating Mutant Virus". The New York Times.
  52. ^ Prepared by the American Association for the Advancement of Science in conjunction with the Association of American Universities, Association of Public and Land-grant Universities, and the Federal Bureau of Investigation Bridging Science and Security for Biological Research: A Discussion about Dual Use Review and Oversight at Research Institutions Report of a Meeting September 13–14, 2012 Archived 2012-10-28 at the Wayback Machine
  53. ^ "NSABB Official Website". Archived from the original on 2015-11-17. Retrieved 2015-10-26.
  54. ^ Science Safety Security official website
  55. ^ "The role of codes of conduct in the amateur biology community". Retrieved 4 February 2014.
  56. (PDF). Retrieved 2012-09-28.
  57. ^ Boustead, Greg (December 11, 2008). "The Biohacking Hobbyist". Seed Magazine. Archived from the original on 2019-10-06.{{cite journal}}: CS1 maint: unfit URL (link)
  58. ^ "DIYbio/FAQ".