Donna Blackmond

Source: Wikipedia, the free encyclopedia.
Donna Blackmond
Born(1958-04-19)April 19, 1958
Pittsburgh, PA
, United States
NationalityAmerican
EducationB.S. Chemical Engineering, University of Pittsburgh, 1980

M.S. Chemical Engineering, University of Pittsburgh, 1981

Ph.D. Chemical Engineering, Carnegie Mellon University, 1984
Scientific career
Fields
University of Essen

Donna Blackmond (born April 19, 1958) is an American chemical engineer and the John C. Martin Endowed Chair in Chemistry at Scripps Research in La Jolla, CA. Her research focuses on prebiotic chemistry, the origin of biological homochirality, and kinetics and mechanisms of asymmetric catalytic reactions. Notable works include the development of

catalyst enantiopurity, biological homochirality and amino acid behavior.[1]

Biography

Blackmond was born on April 19, 1958, in Pittsburgh, PA, where she attended

Scripps Research Institute in La Jolla, California. Her most current research applies the quantitative aspects of her chemical engineering background to the synthesis of complex organic molecules by catalytic routes, particularly asymmetric catalysis.[1]

Areas of research

Reaction Progress Kinetic Analysis

Blackmond has pioneered the methodology of Reaction Progress Kinetic Analysis (RPKA), which is used for rapid determination of concentration dependences of reactants.[1] RPKA allows for in situ measurements to produce a number of rate equations that enable analysis of a reaction using a minimal number of experiments. The purpose for this type of analysis is to help understand what the driving force of a reaction might be and describe possible mechanistic pathways.[2] This technique distinguishes rate processes occurring on the catalytic cycle from those occurring off the cycle. Notable applications of RPKA include asymmetric hydrogenation, asymmetric organocatalytic reactions, palladium catalyzed carbon-carbon and carbon-nitrogen bond forming reactions, and transition-metal catalyzed competitive reactions.[1]

Nonlinear effects of catalyst enantiopurity

Nonlinear effects describe the non-ideal relationship between

Henri Kagan. Kagan developed mathematical models to describe this non-ideal behavior, MLn models.[3] Blackmond has performed studies that have led to an understanding of reaction rate and its relationship to catalyst ee. Many proposed mathematical models have been tested in the Blackmond lab, which have helped determine possible mechanistic features of reactions, including the Soai reaction.[4] The Soai reaction is of abiotic synthetic interest because it is an autocatalytic reaction, which rapidly produces a large amount of enantiopure products.[5] Blackmond was the first to use Kagan's ML2 model to study the non-linear effects of this reaction. She was the first to conclude that a homochiral dimer was the active catalyst in promoting homochirality for the Soai reaction.[4]

Biological homochirality and amino acid phase behavior

More recently, Blackmond has extended kinetic models to describe the origin of biological homochirality. She has shown solutions of mostly enantiopure amino acids can be produced from nearly racemic mixtures via solution-solid partitioning of the enantiomers. The discovery that

eutectic mixtures could be manipulated, depending on the components of the mixture, allows for changes to the crystal structure and solubility of substances. Amino acids crystallize in one of two ways, as a mixture of D and L enantiomers (racemic compound) or as separate enantiomers (conglomerate) .[6]
For nonracemic, nonenantiopure mixtures of molecules under ternary phase equilibrium, partitioning of enantiomers occurs between the liquid and solid phases depending on the form that the crystals take.

Achievements and awards

  • James Flack Norris Award in Physical Organic Chemistry (American Chemical Society), 2023[7]
  • Elected Member, US National Academy of Sciences, 2021[8]
  • Fellow of the Royal Society of Chemistry, 2021
  • Elected Member, Deutsche Akademie der Naturforscher Leopoldina, 2020
  • Elected Member, American Academy of Arts and Sciences, 2016
  • American Institute of Chemists Chemical Pioneer Award, 2016
  • Gabor Somorjai Award for Creative Research in Catalysis, American Chemical Society, 2016
  • Elected Member, US National Academy of Engineering, 2013
  • Royal Society of Chemistry Award in Physical Organic Chemistry, 2009
  • Royal Society Wolfson Research Merit Award, 2007
  • Arthur C. Cope Scholar Award, 2005[9]
  • Miller Institute Research Fellow at University of California, Berkeley, 2003
  • The Royal Society of Chemistry's Award in Process Technology, 2003
  • Organic Reactions Catalysis Society's Raul Rylander Award, 2003
  • Woodward Visiting Scholar at Harvard University, 2002–2003
  • North American Catalysis Society's Paul H. Emmett Award, 2001
  • NSF Presidential Young Investigator Award, 1986–91

References

  1. ^ a b c d "Donna Blackmond". The Scripps Research Institute. Retrieved 2 November 2016.
  2. PMID 15997457
    .
  3. .
  4. ^ .
  5. .
  6. .
  7. ^ "ACS 2023 National Award winners". Chemical & Engineering News. Retrieved 2022-11-04.
  8. ^ "2021 NAS Election". www.nasonline.org. Retrieved 2022-11-04.
  9. ^ "Past Recipients". American Chemical Society. Retrieved 2022-11-04.