PPP1R1B

Source: Wikipedia, the free encyclopedia.
(Redirected from
Dopamine- and cAMP-regulated neuronal phosphoprotein
)
PPP1R1B
Identifiers
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_001242464
NM_032192
NM_181505

NM_144828
NM_001313970

RefSeq (protein)

NP_001229393
NP_115568
NP_852606
NP_115568.2

NP_001300899
NP_659077

Location (UCSC)Chr 17: 39.63 – 39.64 MbChr 11: 98.24 – 98.25 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Protein phosphatase 1 regulatory subunit 1B (PPP1R1B), also known as dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-32), is a protein that in humans is encoded by the PPP1R1B gene.[5][6]

Function

Midbrain dopaminergic neurons play a critical role in multiple brain functions, and abnormal signaling through dopaminergic pathways has been implicated in several major neurologic and psychiatric disorders. One well studied target for the actions of dopamine is DARPP32. In the densely dopamine- and glutamate-innervated rat caudate-putamen, DARPP32 is expressed in medium-sized spiny neurons[7] that also express dopamine D1 receptors.[8] The function of DARPP32 seems to be regulated by receptor stimulation. Both dopaminergic and glutamatergic (NMDA) receptor stimulation regulate the extent of DARPP32 phosphorylation, but in opposite directions.[9] Dopamine D1 receptor stimulation enhances cAMP formation, resulting in the phosphorylation of DARPP32;[8] (this is disputed by more recent research that claims cAMP signaling induces dephosphorylation of DARPP32[10]) phosphorylated DARPP32 is a potent protein phosphatase-1 (PPP1CA) inhibitor.[11] NMDA receptor stimulation elevates intracellular calcium, which leads to activation of calcineurin and dephosphorylation of phospho-DARPP32, thereby reducing the phosphatase-1 inhibitory activity of DARPP32.[5][9] DARPP-32 is critical for dopamine dependent striatal synaptic plasticity,[12] possibly by serving as a dopamine-dependent gating mechanism for calcium/CaMKII signaling.[13] It has been predicted that DARPP-32, in conjunction with ARPP-21, could also be involved in setting-up of eligibility trace-like temporal window for striatal postsynaptic signaling.[13]

Clinical significance

CNS

This gene is also known as DARPP-32, highlighting its role as a dopamine- and cyclic AMP-regulated phosphoprotein. As such PPP1R1B affects

antipsychotics do not regulate the expression of DARPP-32.[20][21]

A considerable proportion of the psychomotor effects of cannabinoids can be accounted for by a signaling cascade in striatal projection neurons involving PKA-dependent phosphorylation of DARPP-32, achieved via modulation of dopamine D2 and adenosine A2A transmission.[22]

PPP1R1B has also been associated with improved transfer of information between the striatum and the prefrontal cortex, suggesting that variants of PPP1R1B can in some circumstances lead to improved and more flexible cognition, while, in the presence of other genetic and environmental factors, it may lead to symptoms of schizophrenia.[23]

Cancer

There are two protein products encoded by PPP1R1B: DARPP-32 and t-Darpp. t-Darpp is a truncated version of DARPP-32 as it is missing the first 36 amino acids at the N-terminus.[24] Both isoforms are overexpressed in a number of cancers including those derived from gastric, colon, prostate, esophageal, breast, and lung tissues.[25][26] In Her-2-positive breast cancer cells, t-Darpp overexpression imparts resistance to Trastuzumab (Herceptin), the chemotherapy drug that shuts down the Her-2 signaling pathway.[27][28][29]

Regulation

Akt and CDK5/p35 intracellular pathway is suggested to be involved on this regulation.[31] Also, neuronal calcium sensor-1 was suggested to modulate the expression of DARPP-32.[32]

Discovery

PPP1R1B was discovered by Paul Greengard and his co-workers.[6]

Interactive pathway map

Click on genes, proteins and metabolites below to link to respective articles.[§ 1]

[[File:
NicotineDopaminergic_WP1602go to articlego to articlego to articleGo to articlego to articleGo to articleGo to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articleGo to articlego to articlego to articlego to articlego to articleGo to articleGo to articlego to articleGo to articleGo to articleGo to articlego to articleGo to articleGo to articleGo to articlego to articlego to articlego to articlego to articlego to articlego to articleGo to articlego to articleGo to articleGo to articlego to articlego to articleGo to articlego to articleGo to articleGo to articlego to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
NicotineDopaminergic_WP1602go to articlego to articlego to articleGo to articlego to articleGo to articleGo to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articleGo to articlego to articlego to articlego to articlego to articleGo to articleGo to articlego to articleGo to articleGo to articleGo to articlego to articleGo to articleGo to articleGo to articlego to articlego to articlego to articlego to articlego to articlego to articleGo to articlego to articleGo to articleGo to articlego to articlego to articleGo to articlego to articleGo to articleGo to articlego to article
|alt=Nicotine Activity on Dopaminergic Neurons edit]]
Nicotine Activity on Dopaminergic Neurons edit
  1. ^ The interactive pathway map can be edited at WikiPathways: "NicotineDopaminergic_WP1602".

References

Further reading