Dystrophin

Source: Wikipedia, the free encyclopedia.
DMD
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)
RefSeq (protein)
Location (UCSC)Chr X: 31.1 – 33.34 MbChr X: 81.99 – 84.25 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse
In humans, the DMD gene is located on the short (p) arm of the X chromosome between positions 21.2 and 21.1

Dystrophin is a rod-shaped

muscle fiber to the surrounding extracellular matrix through the cell membrane. This complex is variously known as the costamere or the dystrophin-associated protein complex (DAPC). Many muscle proteins, such as α-dystrobrevin, syncoilin, synemin, sarcoglycan, dystroglycan, and sarcospan, colocalize with dystrophin at the costamere. It has a molecular weight of 427 kDa [5][6]

Dystrophin is coded for by the DMD

kilobases and takes 16 hours to transcribe;[7] the mature mRNA measures 14.0 kilobases.[8] The 79-exon muscle transcript[9] codes for a protein of 3685 amino acid residues.[10]

Spontaneous or inherited mutations in the dystrophin gene can cause different forms of muscular dystrophy, a disease characterized by progressive muscular wasting. The most common of these disorders caused by genetic defects in dystrophin is Duchenne muscular dystrophy.

Function

Dystrophin is a protein located between the

myofiber). It is a cohesive protein, linking actin filaments to other support proteins that reside on the inside surface of each muscle fiber's plasma membrane (sarcolemma). These support proteins on the inside surface of the sarcolemma in turn links to two other consecutive proteins for a total of three linking proteins. The final linking protein is attached to the fibrous endomysium of the entire muscle fiber. Dystrophin supports muscle fiber strength, and the absence of dystrophin reduces muscle stiffness, increases sarcolemmal deformability, and compromises the mechanical stability of costameres and their connections to nearby myofibrils. This has been shown in recent studies where biomechanical properties of the sarcolemma and its links through costameres to the contractile apparatus were measured,[11] and helps to prevent muscle fiber injury. Movement of thin filaments (actin) creates a pulling force on the extracellular connective tissue that eventually becomes the tendon of the muscle. The dystrophin associated protein complex also helps scaffold various signalling and channel proteins, implicating the DAPC in regulation of signalling processes.[12]

Pathology

Dystrophin deficiency has been definitively established as one of the root causes of the general class of myopathies collectively referred to as muscular dystrophy. The deletions of one or several exons of the dystrophin DMD gene cause Duchenne and Becker muscular dystrophies.[13] The large cytosolic protein was first identified in 1987 by Louis M. Kunkel,[14] after concurrent works by Kunkel and Robert G. Worton to characterize the mutated gene that causes Duchenne muscular dystrophy (DMD).[15][16] At least 9 disease-causing mutations in this gene have been discovered.[17]

Normal skeletal muscle tissue contains only small amounts of dystrophin (about 0.002% of total muscle protein),

Becker's muscular dystrophy (BMD). In some cases, the patient's phenotype is such that experts may decide differently on whether a patient should be diagnosed with DMD or BMD. The theory currently most commonly used to predict whether a variant will result in a DMD or BMD phenotype, is the reading frame rule.[18]

Though its role in airway smooth muscle is not well established, recent research indicates that dystrophin along with other subunits of dystrophin glycoprotein complex is associated with phenotype maturation.[19]

Research

A number of models are used to facilitate research on DMD gene defects. These include the mdx mouse, GRMD (golden retriever muscular dystrophy) dog, and HFMD (hypertrophic feline muscular dystrophy) cat.[20]

The mdx mouse contains a nonsense mutation in exon 23, leading to a shortened dystrophin protein.[21] Levels of dystrophin in this model is not zero: a variety of mutation alleles exist with measurable levels certain of dystrophin isoforms.[20] Muscle degeneration pathology is most easily visible in the diaphragm.[22] Generally, clinically relevant pathology is observed with older mdx mice.[22]

The GRMD dog is one of several existing dystrophin-deficient dogs identified where substantial characterization has been performed.[23] Clinically relevant pathology can be observed at 8 weeks after birth, with continued gradual deterioration of muscle function.[24] Muscle histology is most analogous to clinical presentation of DMD in humans with necrosis, fibrosis and regeneration.[25]

The HFMD cat has a deletion in the promoter region of the DMD gene.[26] Muscle histology shows necrosis but no fibrosis.[27] Extensive hypertrophy has been observed which is thought to be responsible for shorter lifespans.[28][27] Due to the hypertrophy, this model may have limited uses for DMD studies.  

Therapeutic microdystrophin

Interactions

Dystrophin has been shown to

interact
with:

Neanderthal admixture

A variant of the DMD gene, which is on the X chromosome, named B006, appears to be an introgression from a Neanderthal-modern human mating.[37]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000198947Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000045103Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. PMID 1319059
    .
  6. ^ "DMD - Dystrophin - Homo sapiens (Human) - DMD gene & protein". www.uniprot.org. Retrieved 1 December 2021.
  7. S2CID 7858296
    .
  8. ^ NCBI Sequence Viewer v2.0
  9. ^ Strachan T and Read AP, 1999. Human molecular genetics, BIOS Scientific, New York, USA
  10. ^ "dystrophin isoform Dp427c [Homo sapiens] - Protein - NCBI". www.ncbi.nlm.nih.gov.
  11. PMID 21312057
    .
  12. .
  13. .
  14. ^ .
  15. .
  16. .
  17. .
  18. .
  19. .
  20. ^ .
  21. .
  22. ^ .
  23. .
  24. .
  25. .
  26. .
  27. ^ .
  28. .
  29. ^ "Chugai In-Licenses Gene Therapy Delandistrogene Moxeparvovec (SRP-9001) for Duchenne Muscular Dystrophy | News". 16 December 2021.
  30. PMID 32539076
    .
  31. ^ "Delandistrogene moxeparvovec - Roche/Sarepta Therapeutics". AdisInsight. Springer Nature Switzerland AG.
  32. PMID 9356463
    .
  33. .
  34. .
  35. .
  36. .
  37. ^ Khan R (January 25, 2011). "Neandertal admixture, revisiting results after shaken priors". Discover Magazine. Archived from the original on January 27, 2013. Retrieved March 27, 2013.

Further reading

External links