Ecotoxicity
Ecotoxicology has been defined as a branch of toxicology that focuses on the study of toxic effects, caused by natural or synthetic pollutants. These pollutants affect animals (including humans), vegetation, and microbes, in an intrinsic way.[1]
Acute vs. chronic ecotoxicity
According to Barrie Peake in their paper “Impact of Pharmaceuticals on the Environment.”, The ecotoxicity of chemicals can be described based on the amount of exposure to any hazardous materials. There are two categories of ecotoxicity founded off of this description: acute toxins and chronic toxins (Peake, 2016). Acute ecotoxicity refers to the detrimental effects resulting from a hazardous exposure for no more than 15 days. Acute ecotoxicity is the direct result from the interaction of a chemical hazard with cell membranes of an organism (Peake, 2016). This interaction often leads to cell or tissue damage or death. Chronic ecotoxicity on the other hand are the detrimental effects resulting from a hazardous exposure of 15 days, to possibly years (Peake, 2016). Chronic ecotoxicity is often associated with “particular drug–receptor actions that initiate a particular pharmacological response in an aquatic or terrestrial organism.” (Peake, 2016). Due to this interaction, chronic ecotoxicity is usually not lethal in the way that acute ecotoxicity is. However, chronic ecotoxicity decreases cellular biochemical functions. This often results in alterations to psychological or behavioral responses of the organism to environmental stimuli (Peake, 2016).
Common environmental toxicants
- Diethyl phthalate- enters the environment through industries manufacturing cosmetics, plastic, and other commercial products.
- Bisphenol A (BPA)- found in mass-produced products such as medical devices, food packaging, cosmetics, children's toys, computers, CD's, etc.
- Pharmaceuticals- a fungicide found in anti-dandruff shampoos. The most common example of this is Climbazole.
- Pesticides
- Some but not all: oven cleaners, and disinfectants.
- Phosphates
- Oil
Household products
In Canada, there is no law requiring manufacturers to state the health and
Fragrance chemicals
Phosphates
Quaternary ammonium compounds (quats)
Trisodium nitrilotriacetate
Trisodium
Antimicrobial chemicals
Personal care products can reach the environment through drainage from waste water treatment plants and digested sludge. Recently, the
Plasticizers
Pesticides
Oil spills
One of the major environmental impacts of oil exploration on the environment is the contamination of aquatic ecosystems from
Overall environmental impact
Ecotoxicity has given us a better understanding of the extent of damage caused by the release of toxic chemicals into our environment. According to the National Library of Medicine; “Current estimates project that every year, a combined load of millions of tons of potentially toxic chemicals enters the environment from a broad range of industrial and domestic processes.” (Fantke, 2020). Some of these toxic chemicals are discharged into lakes, rivers, the ocean, and groundwater. Animals, plants, and water surfaces can also be exposed from airborne chemical emissions caused from cities, factories, and fires (Fantke, 2020). Chemical sludge often gets into agricultural and industrial soils as well.
These chemicals degrade into the environment and can become toxic metabolites. When this happens they “have the potential to bioaccumulate and biomagnify in species of higher trophic levels.” (Fantke, 2020). This can result in a wide variety of consequences, including but not limited to: the extinction of environmentally sensitive species, alterations to local food webs, physiological and genetic changes, and changes in reproduction, growth, and behavior (Fantke, 2020). Although much research into ecotoxicity has been done, there is still uncertainty about the true extent of damage caused. There may be long-term consequences on the structure and function of local and global ecosystems we are yet to understand.
See also
References
- PMID 617089.
- ^ a b Suzuki, David. "The dirt on toxic chemicals in household cleaning products". David Suzuki Foundation, Solutions are in our nature. The David Suzuki Foundation. Archived from the original on 3 April 2016. Retrieved 3 April 2016.
- S2CID 26085318.
- ^ PMID 19528055.
- ^ .
- ^ PMID 11202648.
- ^ S2CID 85057760.
Further reading
- Peake, Barrie M.; Braund, Rhiannon; Tong, Alfred Y.C.; Tremblay, Louis A. (2016). "Impact of pharmaceuticals on the environment". The Life-Cycle of Pharmaceuticals in the Environment. pp. 109–152. ISBN 978-1-907568-25-1.
- Fantke, Peter; Aurisano, Nicolo; Bare, Jane; Backhaus, Thomas; Bulle, Cécile; Chapman, Peter M.; De Zwart, Dick; Dwyer, Robert; Ernstoff, Alexi; Golsteijn, Laura; Holmquist, Hanna; Jolliet, Olivier; McKone, Thomas E.; Owsianiak, Mikołaj; Peijnenburg, Willie; Posthuma, Leo; Roos, Sandra; Saouter, Erwan; Schowanek, Diederik; van Straalen, Nico M.; Vijver, Martina G.; Hauschild, Michael (December 2018). "Toward Harmonizing Ecotoxicity Characterization in Life Cycle Impact Assessment". Environmental Toxicology and Chemistry. 37 (12): 2955–2971. PMID 30178491.
External links
- Ecotoxmodels.org is a website on models for ecotoxicity.
- Ecotoxicity definition on the Science-in-the-Box website of P&G
- EXTOXNET – The EXtension TOXicology NETwork
- EPA ECOTOX Database (US Environmental Protection Agency)- Aquatic and Terrestrial Plant and Animal toxicity data for many common test species