Geodetic coordinates

Source: Wikipedia, the free encyclopedia.
(Redirected from
Ellipsoidal coordinates (geodesy)
)
Geodetic coordinates P(ɸ,λ,h)

Geodetic coordinates are a type of

reference ellipsoid
. They include geodetic latitude (north/south) ϕ, longitude (east/west) λ, and ellipsoidal height h (also known as geodetic height[1]). The triad is also known as Earth ellipsoidal coordinates
ellipsoidal-harmonic coordinates or ellipsoidal coordinates
).

Definitions

Longitude measures the rotational angle between the zero meridian and the measured point. By convention for the Earth, Moon and Sun, it is expressed in degrees ranging from −180° to +180°. For other bodies a range of 0° to 360° is used. For this purpose, it is necessary to identify a zero

Prime Meridian. For other bodies a fixed surface feature is usually referenced, which for Mars is the meridian passing through the crater Airy-0
. It is possible for many different coordinate systems to be defined upon the same reference ellipsoid.

Geodetic latitude measures how close to the poles or equator a point is along a meridian, and is represented as an angle from −90° to +90°, where 0° is the equator. The geodetic latitude is the angle between the equatorial plane and a line that is

planetocentric latitude
are used instead.

Ellipsoidal height (or ellipsoidal

signed distance
such that points inside the ellipsoid have negative height.

Geodetic vs. geocentric coordinates

Geodetic latitude and

surface normal at a point on the ellipsoid, whereas geocentric latitude is defined as the angle between the equatorial plane and a radial line connecting the centre of the ellipsoid to a point on the surface (see figure). When used without qualification, the term latitude refers to geodetic latitude. For example, the latitude used in geographic coordinates
is geodetic latitude. The standard notation for geodetic latitude is φ. There is no standard notation for geocentric latitude; examples include θ, ψ, φ′.

Similarly, geodetic altitude is defined as the height above the ellipsoid surface, normal to the ellipsoid; whereas

orbital altitude
).

If the impact of Earth's

).

Conversion

Given geodetic coordinates, one can compute the

geocentric Cartesian coordinates of the point as follows:[3]

where a and b are the equatorial radius (

prime vertical radius of curvature
, function of latitude ϕ:

In contrast, extracting ϕ, λ and h from the rectangular coordinates usually requires iteration as ϕ and h are mutually involved through N:[4][5]

.

where . More sophisticated methods are available.

See also

References

  1. ^ National Geodetic Survey (U.S.).; National Geodetic Survey (U.S.) (1986). Geodetic Glossary. NOAA technical publications. U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Charting and Geodetic Services. p. 107. Retrieved 2021-10-24.
  2. . Retrieved 2021-10-24.
  3. .
  4. ^ "A guide to coordinate systems in Great Britain". Ordnance Survey. Appendices B1, B2. Archived from the original on 2012-02-11. Retrieved 2012-01-11.
  5. ^ Osborne, P (2008). "The Mercator Projections" (PDF). Section 5.4. Archived from the original (PDF) on 2012-01-18.