Entorrhizomycetes

Source: Wikipedia, the free encyclopedia.

Entorrhizomycetes
Galls on the roots of Juncus articulatus induced by Entorrhiza casparyana
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Fungi
Clade: Symbiomycota
Subkingdom: Dikarya
Bauer (2015) [2]
Division: Entorrhizomycota
Tedersoo, Sánchez-Ramírez, Kõljalg, Bahram, M. Döring, Schigel, T.W. May, M. Ryberg & Abarenkov (2018)
Class: Entorrhizomycetes
Begerow, Stoll &
R.Bauer (2007)[1]
Type genus
C.A.Weber
(1884)
Order
Synonyms

Entorrhizomycetidae Bauer & Oberwinkler 1997[3]

Entorrhizomycetes is the sole

subdivision Ustilaginomycotina. A 2015 study[2] did a "comprehensive five-gene analyses" of Entorrhiza and concluded that the former class Entorrhizomycetes is possibly either a close sister group to the rest of Dikarya or Basidiomycota.[4]

Taxonomy

Taxonomy based on the work of Wijayawardene et al. 2019.[5]

  • Order Talbotiomycetales Riess et al. 2015[6]
    • Family Talbotiomycetaceae Riess et al. 2015
  • Order Entorrhizales Bauer & Oberwinkler 1997
    • Family Entorrhizaceae Bauer & Oberwinkler 1997

Morphology

All members of Entorrhizomycetes are obligate parasites on the roots of plants.[8] Sori are produced as galls on the roots of hosts. Galls are tubercular with a globoid, irregular or elongated shape and are composed of vascular bundles, parenchymatous cells and fungal mycelium.[7] Younger segments of the galls are pale in color whilst older segments turn brown.[2] Mycelium consists of dikaryotic and septate hyphae with fibrillate walls that lack clamp connections. Initially, the mycelium grows intercellularily before producing coiled intracellular hyphae terminating in globose cells that detach and develop into teliospores.[2] Teliospores germinate into tetrads through internal septation, and each tetrad compartment produce hyphae that terminate in sigmoid propagules.[2] Bauer et al. noted that young teliospores have two nuclei, older teliospores have only one nucleus, and each tetrad compartment has one nucelus each. This indicates that karyogamy and meiosis occurs in the teliospore.[2] It has been observed that teliospores are liberated when the host plant dies and the galls disintegrate,[7] and that the number of galls is higher in waterlogged soils compared to well-drained soils.[9] These observations might support the hypothesis that entorrhizomycetes disperse through soil moisture.[2]

Juncus articulatus with root galls caused by Juncorrhiza casparyana (arrows).
Juncorrhiza sp. hyphae and teliospores in living host cell.

Both Talbotiomyces and Juncorrhiza are segregate taxa from Entorrhiza sensu lato.[7][8] Entorrhiza sensu stricto is diagnosed by teliospores with longitudinally ridged or cerebriform ornamentation and infecting plants belonging to Cyperaceae, whilst Juncorrhiza is diagnosed by teliospores with verrucose-tuberculate ornamentation and infecting plants belonging to Juncaceae.[8] Talbotiomyces is distinguished from species in Entorrhizales by hyphal septa with simple pores that lack caps or membranes (species in Entorrhizales have dolipores that lack caps or membranes) and infecting plants belonging to Caryophyllales.[7][8]

Evolution

Molecular phylogeny place Entorrhizomycetes as either a sister group to

basidiospores).[2] It is possible that an ancestral structure similar to the teliospore tetrad evolved into phragmobasidia which in turn evolved into holobasidia on multiple occasions during the transition from water-dispersal to air-dispersal. If entorrhizomycetes are sister to Dikarya, it is also possible that the teliospore tetrad is homologous to the meiospore tetrads of early-diverging ascomycetes.[2]

The stem age of the Entorrhizomycota has been estimated to approximately 560 Mya during the late Neoproterozoic era. Divergence between Talbotiomycetales and Entorrhizales is estimated to approximately 50 Mya, and divergence between Entorrhiza and Juncorrhiza is estimated to approximately 42 Mya. Both Entorrhiza and Juncorrhiza underwent a major radiation during the Oligocene and Miocene epochs. Given that these divergence estimates are incongruent or only slightly congruent with the estimated stem ages of the host plant lineages, and incongruence in the co-phylogeny between Entorrhizales and host plants, host-shift speciation is more likely to have occurred than co-speciation during these divergences and the radiation of Entorrhizales.[8]

Entorrhizomycetes have much lower number of species and more limited host range than their estimated age would indicate. One possible explanation is that many lineages have gone extinct along with their hosts during

mass extinction events in the past. Another explanation is that much of the diversity in this phylum remains undiscovered.[2] The latter explanation is supported by the fact that host plants don't show any aboveground symptoms of infection,[8] and there might be species that don't cause galls on their hosts.[2]

References