Environmental impact of nuclear power

Source: Wikipedia, the free encyclopedia.

Greenhouse gas emissions per energy source. Nuclear power is one of the sources with the least greenhouse gas emissions.
Nuclear power activities involving the environment; mining, enrichment, generation and geological disposal.

enrichment, fabrication and transport of fuel is small when compared with the carbon dioxide emitted by fossil fuels of similar energy yield, however, these plants still produce other environmentally damaging wastes.[1] Nuclear energy and renewable energy have reduced environmental costs by decreasing CO2 emissions resulting from energy consumption.[2]

There is a catastrophic risk potential if containment fails,

A large nuclear power plant may reject waste heat to a natural body of water; this can result in undesirable increase of the water temperature with adverse effect on aquatic life. Alternatives include cooling towers.[6]

The Onagawa Nuclear Power Plant – a plant that cools by direct use of ocean water, not requiring a cooling tower

neutron irradiation
induced radioactivity is detectable.

Waste streams

Nuclear power has at least three waste streams that may impact the environment:[8]

  1. Spent nuclear fuel at the reactor site (including fission products and plutonium waste)
  2. Tailings and waste rock at uranium mining mills
  3. Releases of ill-defined quantities of radioactive materials during
    accidents

Nuclear reprocessing and breeder reactors which can decrease the need for storage of spent fuel in a deep geological repository have faced economic and political hurdles but are in some use in Russia, India, China, Japan and France, which are among the countries with the highest nuclear energy production outside the United States. However, the U.S. has not undertaken significant efforts towards either reprocessing or breeder reactors since the 1970s instead relying on the once through fuel cycle.

Radioactive waste

High-level waste

USDOE mothballed plans to develop the Yucca Mountain nuclear waste repository in Nevada.[9]

The spent nuclear fuel from uranium-235 and plutonium-239 nuclear fission contains a wide variety of carcinogenic radionuclide isotopes such as strontium-90, iodine-131, and caesium-137. Such waste includes some of the most long-lived transuranic elements such as americium-241 and isotopes of plutonium.[10] The most long-lived radioactive wastes, including spent nuclear fuel, usually must be contained and isolated from the environment for a long period of time. Spent nuclear fuel storage is mostly a problem in the United States, following a 1977 prohibition by then-President Jimmy Carter on nuclear fuel recycling. France, The United Kingdom, and Japan are some of the countries that have rejected the repository solution. Spent nuclear fuel produced by some types of reactors is a valuable asset, not simply waste.[11]

Disposal of these wastes in specially-engineered underground repositories is the preferred long-term storage solution.[12] The International Panel on Fissile Materials has said:

It is widely accepted that spent nuclear fuel and high-level reprocessing and plutonium wastes require well-designed storage for long periods of time, to minimize releases of the contained radioactivity into the environment. Safeguards are also required to ensure that neither plutonium nor highly enriched uranium is diverted to weapon use. There is general agreement that placing spent nuclear fuel in repositories hundreds of meters below the surface would be safer than indefinite storage of spent fuel on the surface.[13]

When designing long-term storage facilities, there are several crucial considerations, including the specific type of radioactive waste, the containers enclosing the waste, other engineered barriers or seals around the containers, the tunnels housing the containers, and the geologic makeup of the surrounding area.[14]

The ability of natural geologic barriers to isolate radioactive waste is demonstrated by the

transuranic elements were generated in the uranium ore body. These elements remain immobile and stable to this day, a span of almost 2 billion years.[15]

Despite long-standing agreement among many experts that geological disposal can be safe, technologically feasible, and environmentally sound, a large part of the general public in many countries remains skeptical.[16] One of the challenges facing the supporters of these efforts is to demonstrate confidently that a repository will contain waste for so long that future containment breaches will pose no significant health or environmental risks.

Nuclear reprocessing does not eliminate the need for a repository, but it reduces the required volume, the need for long-term heat dissipation, and the long-term radiation hazard. Reprocessing does not eliminate the political and social challenges to repository siting.[13]

The countries that have made the most progress towards a repository for high-level radioactive waste have typically started with public consultations and made voluntary siting a necessary condition. This consensus-seeking approach is believed to have a greater chance of success than top-down modes of decision making, but the process is necessarily slow, and there is "inadequate experience around the world to know if it will succeed in all existing and aspiring nuclear nations."[17] Moreover, many communities do not want to host a nuclear waste repository as they are "concerned about their community becoming a de facto site for waste for thousands of years, the health and environmental consequences of an accident, and lower property values."[18]

In a 2010 Presidential Memorandum, U.S. President Obama established the Blue Ribbon Commission on America's Nuclear Future.[19] The commission, composed of fifteen members, conducted an extensive two-year study of nuclear waste disposal.[19] During their research, the Commission visited Finland, France, Japan, Russia, Sweden, and the UK, and in 2012, the Commission submitted its final report.[20] The Commission did not issue recommendations for a specific site but rather presented a comprehensive recommendation for disposal strategies.[21] One major recommendation was that "the United States should undertake an integrated nuclear waste management program that leads to the timely development of one or more permanent deep geological facilities for the safe disposal of spent fuel and high-level nuclear waste."[21]

CANDU or the Indian IPHWR do not need enriched fuel and can operate using natural uranium. This allows better use of the energy contained in the initial uranium ore (while higher enrichment allows higher burnup, the amount of natural uranium needed to produce this fuel increases faster than the achievable burnup)[22] and reduces the energy needed in fuel manufacturing as the conversion of the yellowcake to uranium hexafluoride
and back into an oxide fuel as well as the energy-intensive enrichment process can be skipped.

Other waste

Moderate amounts of low-level waste are managed through a chemical and volume control system (CVCS). This includes gas, liquid, and solid waste produced via the process of purifying the water through evaporation. Liquid waste is reprocessed continuously, and gas waste is filtered, compressed, stored to allow decay, diluted, and then discharged. The rate at which this is allowed is regulated and studies must prove that such discharge does not pose public health risks (see radioactive effluent emissions).

Solid waste can be disposed of simply by placing it where it will not be disturbed for a few years. There are three low-level waste disposal sites in the United States, in South Carolina, Utah, and Washington.[23] Solid waste from the CVCS is combined with solid waste that comes from handling materials before it is buried off-site.[24]

Power plant emission

Radioactive gases and effluents

cosmic radiation.[25]

All reactors in the United States are required by law to have a containment building. The walls of containment buildings are several feet thick and made of concrete designed to stop the release of any radiation emitted by the reactor into the environment. For comparison:[26]

The waste produced by coal plants is actually more radioactive than that generated by their nuclear counterparts. In fact, the fly ash emitted by a [coal] power plant—a by-product from burning coal for electricity—carries into the surrounding environment 100 times more radiation than a nuclear power plant producing the same amount of energy. . . . Estimated radiation doses ingested by people living near the coal plants were equal to or higher than doses for people living around the nuclear facilities. At one extreme, the scientists estimated fly ash radiation in individuals' bones at around 18 millirems (thousandths of a rem, a unit for measuring doses of ionizing radiation) a year. Doses for the two nuclear plants, by contrast, ranged from between three and six millirems for the same period. And when all food was grown in the area, radiation doses were 50 to 200 percent higher around the coal plants.

The total amount of radioactivity released through the CVCS depends on the power plant, the regulatory requirements, and the plant's performance. Atmospheric dispersion models combined with pathway models are employed to accurately approximate the exposure to a member of the public from the effluents emitted. Effluent monitoring is conducted continuously at the plant.

Tritium

Tritium Effluent Limits[citation needed]
Country Limit (Bq/L)
Australia 76,103
Finland 30,000
WHO 10,000
Switzerland 10,000
Russia   7,700
Ontario, Canada   7,000
European Union 1001
United States 740
California Public Health Goal    14.8

A leak of

Vermont Yankee in 2010, along with similar incidents at more than 20 other US nuclear plants in recent years, has kindled doubts about the reliability, durability, and maintenance of aging nuclear installations in the United States.[27]

Tritium is a radioactive isotope of hydrogen that emits a low-energy beta particle and is usually measured in becquerels (i.e. atoms decaying per second) per liter (Bq/L). Tritium can be contained in water released from a nuclear plant. The primary concern for tritium release is its presence in drinking water, in addition to biological magnification leading to tritium in crops and animals consumed for food.[28]

Legal concentration limits of tritium have differed greatly from place to place (see table right). For example, in June 2009 the Ontario Drinking Water Advisory Council recommended lowering the limit from 7,000 Bq/L to 20 Bq/L.[29] According to the NRC, tritium is the least dangerous radionuclide because it emits very weak radiation and leaves the body relatively quickly.[citation needed]

Uranium mining

A drum of yellowcake
Rössing
open pit uranium mine, Namibia

Uranium mining is the process of extracting uranium ore from the ground. Kazakhstan, Canada, and Australia are the top three producers and together account for 63% of world uranium production.[30] A prominent use of uranium is as fuel for nuclear power plants. The mining and milling of uranium present significant dangers to the environment.[31]

In 2010, 41% of the world's uranium production was produced by

Olympic Dam mine in South Australia uses 35,000 m³ of water each day and plans to increase this to 150,000 m³ per day.[33]

The Church Rock uranium mill spill occurred in New Mexico on July 16, 1979, when the tailings disposal pond breached its dam.[34][35] Over 1,000 tons of solid radioactive mill waste and 93 million gallons of acidic, radioactive tailings solution flowed into the Puerco River, and contaminants traveled 80 miles (130 km) downstream to Navajo County, Arizona and onto the Navajo Nation.[35] The accident released more radiation than the Three Mile Island accident that occurred four months earlier and was the largest release of radioactive material in U.S. history, although the radioactive material was diluted by the 93 million gallons of water and sulfuric acid.[35][36][37][38] Groundwater near the spill was contaminated and the Puerco rendered unusable by local residents, who were not immediately aware of the toxic danger.[39]

Despite efforts made in cleaning up Cold War nuclear arms race uranium sites, significant problems stemming from the legacy of uranium development still exist today on the Navajo Nation and in the states of Utah, Colorado, New Mexico, and Arizona. Hundreds of abandoned mines, primarily used for the US arms race and not nuclear energy production, have not been cleaned up and present environmental and health risks in many communities.[40] The Environmental Protection Agency estimates that there are 4,000 mines with documented uranium production, and another 15,000 locations with uranium occurrences in 14 western states,[41] most found in the Four Corners area and Wyoming.[42] The Uranium Mill Tailings Radiation Control Act is a United States environmental law that amended the Atomic Energy Act of 1954 and gave the Environmental Protection Agency the authority to establish health and environmental standards for the stabilization, restoration, and disposal of uranium mill waste.[43]

Cancer

Numerous studies have been done on the possible relationship between nuclear power and cancer. Such studies have looked for excess cancers in both plant workers and surrounding populations due to releases during normal operations of nuclear plants and other parts of the nuclear power industry, as well as excess cancers in workers and the public due to accidental releases. There is agreement that excess cancers in both plant workers and the surrounding public have been caused by accidental releases such as the Chernobyl accident.[44] There is also agreement that some workers in other parts of the nuclear fuel cycle (most notably uranium mining) have had elevated rates of cancer, at least in past decades.[45] Excess mortality is associated with all mining activity and is not unique to uranium mining.[46] However, numerous studies of possible cancers caused by nuclear power plants in normal operation have come to opposing conclusions, and the issue is a matter of scientific controversy and ongoing study.[47][48][49]

Several epidemiological studies have found that there is an increased risk of various diseases, especially cancers, among people who live near nuclear facilities. A widely cited 2007 meta-analysis by Baker et al. of 17 research papers was published in the European Journal of Cancer Care.[50] It offered evidence of elevated leukemia rates among children living near 136 nuclear facilities in the United Kingdom, Canada, France, United States, Germany, Japan, and Spain. However, this study has been criticized for several reasons, such as its combination of heterogeneous data (different age groups, sites that were not nuclear power plants, different zone definitions), arbitrary selection of 17 out of 37 individual studies, and exclusion of sites with zero observed cases or deaths.[51][52]

Elevated leukemia rates among children were also found in a 2008 German study by Kaatsch et al. that examined residents living near 16 major nuclear power plants in Germany.[50] This study has also been criticized for reasons similar to those described above.[52][53] These 2007 and 2008 results are not consistent with many other studies that have tended not to show such associations.[54][55][56][57][58] The British Committee on Medical Aspects of Radiation in the Environment issued a study in 2011 of children under five living near 13 nuclear power plants in the UK during the period 1969–2004. The committee found that children living near power plants in Britain are no more likely to develop leukemia than those living elsewhere.[52] Similarly, a 1991 study for the National Cancer Institute found no excess cancer mortalities in 107 US counties close to nuclear power plants.[59] However, in view of the ongoing controversy, the US Nuclear Regulatory Commission has requested the National Academy of Sciences to oversee a state-of-the-art study of cancer risk in populations near NRC-licensed facilities.[47]

A subculture of frequently undocumented[clarification needed] nuclear workers do the dirty, difficult, and potentially dangerous work often shunned by regular employees. The World Nuclear Association states that the transient workforce of "nuclear gypsies"—casual workers employed by subcontractors—has been "part of the nuclear scene for at least four decades."[60] Existing labor laws regarding worker health are not always properly enforced.[61] A 15-country collaborative cohort study of cancer risks due to exposure to low-dose ionizing radiation, involving 407,391 nuclear industry workers, showed significant increase in cancer mortality. The study evaluated 31 types of cancers, primary and secondary.[62]

Nuclear power reactor accidents can result in a variety of

beta radiation.[63]

The 2011 Fukushima Daiichi nuclear disaster, the most serious

nuclear accident since 1986, resulted in the displacement of 50,000 households.[64] Radiation checks led to bans of some shipments of vegetables and fish.[65] However, according to UN reports, the radiation leaks were small and did not cause any health problems in residents.[66] Evacuation of residents was criticized as not scientifically justified.[67]

Production of nuclear power relies on the nuclear fuel cycle, which includes uranium mining and milling. Uranium workers are routinely exposed to low levels of

hematological cancers in uranium workers.[68]

Comparison to coal-fired power generation

In terms of net radioactive release, the National Council on Radiation Protection and Measurements (NCRP) estimated the average radioactivity per short ton of coal is 17,100 millicuries per 4,000,000 tons. With 154 coal plants in the United States, this amounts to emissions of 0.6319 TBq per year, per plant.

It is sometimes cited that coal plants release 100 times the radioactivity of nuclear plants. This comes from NCRP Reports No. 92 and No. 95, which estimate the dose to the population from 1000 MWe coal and nuclear plants at 4.9

Chest x-ray gives a dose of about 0.06 mSv, for comparison).[69] The Environmental Protection Agency estimates an added dose of 0.3 µSv per year for living within 50 miles (80 km) of a coal plant and 0.009 milli-rem per year for those living within the same distance of a nuclear plant.[70] Nuclear power plants in normal operation emit less radioactivity than coal power plants.[69][70]

Unlike coal-fired or oil-fired power generation, nuclear power generation does not directly produce any

nitrogen oxides, or mercury (pollution from fossil fuels is blamed for 24,000 early deaths each year in the U.S. alone[71]
). However, as with all energy sources, there is some pollution associated with support activities such as mining, manufacturing, and transportation.

A major European Union-funded research study known as ExternE, or

solar panels, and was over thirty times lower than coal's impact of €0.06/kWh, or 6 cents/kWh. However, wind power's impact was €0.0009/kWh, just under half the price of nuclear power.[72]

In May 2023, the Washington Post wrote, "Had Germany kept its nuclear plants running from 2010, it could have slashed its use of coal for electricity to 13 percent by now. Today’s figure is 31 percent... Already more lives might have been lost just in Germany because of air pollution from coal power than from all of the world’s nuclear accidents to date, Fukushima and Chernobyl included."[73]

Contrast of radioactive accident emissions with industrial emissions

Proponents of nuclear power argue that the problems of nuclear waste "do not come anywhere close" to approaching the problems of fossil fuel waste.[74][75] A 2004 article from the BBC states: "The World Health Organization (WHO) says 3 million people are killed worldwide by outdoor air pollution annually from vehicles and industrial emissions, and 1.6 million indoors through using solid fuel."[76] In the U.S. alone, fossil fuel waste kills 20,000 people each year.[77] A coal power plant releases 100 times as much radiation as a nuclear power plant of the same wattage.[78] It is estimated that during 1982, US coal burning released 155 times as much radioactivity into the atmosphere as the Three Mile Island accident.[79] The World Nuclear Association provides a comparison of deaths due to accidents among different forms of energy production. In their life-cycle comparison, deaths per TW-yr of electricity produced from 1970 to 1992 are quoted as 885 for hydropower, 342 for coal, 85 for natural gas, and 8 for nuclear.[80] The figures include uranium mining, which can be a hazardous industry, with many accidents and fatalities.[81]

Waste heat

The North Anna plant uses direct exchange cooling into an artificial lake.

As with all thermoelectric plants, nuclear power plants need cooling systems. The most common systems for thermal power plants, including nuclear, are:

A 2011 study by the National Renewable Energy Laboratory determined that the median nuclear plant with cooling towers consumed 672 gallons of water per megawatt-hour, less than the median consumption of concentrating solar power (865 gal/MWhr for trough type, and 786 gal/MWhr for power tower type), slightly less than coal (687 gal/MWhr), but more than that for natural gas (198 gal/MWhr). Once-through cooling systems use more water, but less water is lost to evaporation. In the median US nuclear plant with once-through cooling, 44,350 gal/MWhr pass through the cooling system, but only 269 gal/MWhr (less than 1 percent) is consumed by evaporation.[85]

Nuclear plants exchange 60 to 70% of their thermal energy by cycling with a body of water or by evaporating water through a cooling tower. This thermal efficiency is somewhat lower than that of coal-fired power plants,[86] thus creating more waste heat.

It is possible to use waste heat in

Ågesta Nuclear Power Plant in Sweden provides nuclear heat generation. In Switzerland, the Beznau Nuclear Power Plant provides heat to about 20,000 people.[87] However, district heating with nuclear power plants is less common than with other modes of waste heat generation; because of either siting regulations and/or the NIMBY effect, nuclear stations are generally not built in densely populated areas. Waste heat is more commonly used in industrial applications.[88] As district heating has a seasonal demand curve it is often only a seasonal solution of the waste heat problem. Furthermore, district heating is less efficient in less densely populated areas and as nuclear power plants are often constructed far out of population centers due to NIMBY and safety concerns, the usage of nuclear district heating hasn't been widespread.[89]

During Europe's

2006 heat waves, French, Spanish, and German utilities had to secure exemptions from regulations in order to discharge overheated water into the environment. Some nuclear reactors shut down.[90][91]

With

freshwater sources.[92] A number of thermal stations use indirect seawater cooling or cooling towers that use little to no freshwater. During heat waves, some stations designed to heat exchange
with rivers and lakes are legally required to reduce output or cease operations to protect water levels and aquatic life.

This presently infrequent problem common among all thermal power stations may become increasingly significant over time.

cooling towers
available.

Nuclear plants, like all

biomass power plants, use special structures to draw in water for cooling. Water is often drawn through screens to minimize debris. Many aquatic organisms are trapped and killed against the screens, through a process known as impingement. Aquatic organisms small enough to pass through the screens are subject to toxic stress in a process known as entrainment.[93][94]

Summer shutdowns are especially pronounced in France, which produces some 70% of electricity with nuclear power plants and where electric home heating is widespread. However, in regions with high heating, ventilation, and air conditioning power use, the summer season, rather than imposing lower power demands, may be the peak season of electricity demand, complicating scheduled summer shutdowns.

Greenhouse gas emissions