Epidermal growth factor

Source: Wikipedia, the free encyclopedia.
EGF
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_001178130
NM_001178131
NM_001963
NM_001357021

NM_010113
NM_001310737
NM_001329594

RefSeq (protein)

NP_001171601
NP_001171602
NP_001954
NP_001343950

NP_001297666
NP_001316523
NP_034243

Location (UCSC)Chr 4: 109.91 – 110.01 MbChr 3: 129.47 – 129.55 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Epidermal growth factor (EGF) is a

disulfide bonds.[6]

EGF was originally described as a secreted peptide found in the

mice and in human urine. EGF has since been found in many human tissues, including platelets,[7] submandibular gland (submaxillary gland),[8] and parotid gland.[8] Initially, human EGF was known as urogastrone.[9]

Structure

In

kDa.[5] It contains three disulfide bridges (Cys6-Cys20, Cys14-Cys31, Cys33-Cys42).[6]

Function

EGF, via binding to its cognate receptor, results in cellular proliferation, differentiation, and survival.[10]

Salivary EGF, which seems to be regulated by dietary inorganic iodine, also plays an important physiological role in the maintenance of oro-esophageal and gastric tissue integrity. The biological effects of salivary EGF include healing of oral and gastroesophageal ulcers, inhibition of gastric acid secretion, stimulation of DNA synthesis as well as mucosal protection from intraluminal injurious factors such as gastric acid, bile acids, pepsin, and trypsin and to physical, chemical and bacterial agents.[8]

Biological sources

The Epidermal growth factor can be found in platelets,[7] urine, saliva, milk, tears, and blood plasma.[11] It can also be found in the submandibular glands,[8][12] and the parotid gland.[8][12] The production of EGF has been found to be stimulated by testosterone.[citation needed]

Polypeptide growth factors

Polypeptide growth factors include:[13]

Sr.No Growth factor Source Major function
1 Epidermal growth factor (EGF) Salivary gland Stimulates growth of epidermal and epithelial cells
2
Platelet derived growth factor
Platelets Stimulates growth of mesenchymal cells, promotes wound healing
3 Transforming growth factor-alpha (TGF-α) Epithelial cell Similar to EGF
4
Transforming growth factor-beta (TGF-β)
Platelets, Kidney, Placenta Inhibitory effect on cultures tumor cell
5 Erythropoietin Kidney Stimulates development of erythropoietic cells
6 Nerve growth factor (NGF) Salivary gland Stimulates the growth of sensory nerves
7 Insulin-like growth factor Serum Stimulates incorporation of sulfates into cartilage, exerts insulin-like action on certain cells
8 Tumor necrosis factor Monocytes Necrosis of tumor cells
9 Interleukin-1 Monocytes, Leukocytes Stimulates synthesis of IL-2
10 Interleukin-2 Lymphocytes Stimulates growth and maturation of T-cells

Mechanism

Diagram showing key components of the MAPK/ERK pathway. In the diagram, "P" represents phosphate. Note EGF at the very top.

EGF acts by binding with high

protein synthesis, and increases in the expression of certain genes including the gene for EGFR – that ultimately lead to DNA synthesis and cell proliferation.[15]

EGF-family / EGF-like domain

EGF is the founding member of the EGF-family of proteins. Members of this protein family have highly similar structural and functional characteristics. Besides EGF itself other family members include:[16]

All family members contain one or more repeats of the conserved amino acid sequence:

CX7CX4-5CX10-13CXCX8GXRC

Where C is cysteine, G is glycine, R is arginine, and X represents any amino acid.[16]

This sequence contains six cysteine residues that form three intramolecular

cell-surface receptors.[5]

Interactions

Epidermal growth factor has been shown to

Medical uses

Recombinant human epidermal growth factor, sold under the brand name Heberprot-P, is used to treat diabetic foot ulcers. It can be given by injection into the wound site,[19] or may be used topically.[20] Tentative evidence shows improved wound healing.[21] Safety has been poorly studied.[21]

EGF is used to modify synthetic scaffolds for manufacturing of bioengineered grafts by emulsion electrospinning or surface modification methods.[22][23]

Bone regeneration

EGF plays an enhancer role on the osteogenic differentiation of

oral implantology.[24]

History

EGF was the second growth factor to be identified.[25] Initially, human EGF was known as urogastrone.[9] Stanley Cohen discovered EGF while working with Rita Levi-Montalcini at the Washington University in St. Louis during experiments researching nerve growth factor. For these discoveries Levi-Montalcini and Cohen were awarded the 1986 Nobel Prize in Physiology or Medicine.

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000138798 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000028017 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^
    PMID 12648462
    .
  6. ^ .
  7. ^ .
  8. ^ .
  9. ^ .
  10. .
  11. .
  12. ^
  13. .
  14. .
  15. .
  16. ^ .
  17. .
  18. .
  19. .
  20. .
  21. ^ .
  22. .
  23. .
  24. .
  25. ISBN 978-0-12-370879-3. Retrieved 2020-11-30. {{cite book}}: |work= ignored (help); Missing or empty |title= (help
    )

Further reading

External links