Nutrient

Page protected with pending changes
Source: Wikipedia, the free encyclopedia.
(Redirected from
Essential nutrients
)

A nutrient is a

scales, feathers, or exoskeletons. Some nutrients can be metabolically converted to smaller molecules in the process of releasing energy, such as for carbohydrates, lipids, proteins, and fermentation products (ethanol or vinegar), leading to end-products of water and carbon dioxide. All organisms require water. Essential nutrients for animals are the energy sources, some of the amino acids that are combined to create proteins, a subset of fatty acids, vitamins and certain minerals. Plants require more diverse minerals absorbed through roots, plus carbon dioxide and oxygen absorbed through leaves. Fungi
live on dead or living organic matter and meet nutrient needs from their host.

Different types of organisms have different essential nutrients. Ascorbic acid (vitamin C) is essential to humans and some animal species, but most other animals and many plants are able to synthesize it. Nutrients may be organic or inorganic: organic compounds include most compounds containing carbon, while all other chemicals are inorganic. Inorganic nutrients include nutrients such as iron, selenium, and zinc, while organic nutrients include, protein, fats, sugars, and vitamins.

A classification used primarily to describe nutrient needs of animals divides nutrients into

upper limits of intake. In many countries, regulations require that food product labels display information about the amount of any macronutrients and micronutrients present in the food in significant quantities. Nutrients in larger quantities than the body needs may have harmful effects.[1] Edible plants also contain thousands of compounds generally called phytochemicals which have unknown effects on disease or health, including a diverse class with non-nutrient status called polyphenols
, which remain poorly understood as of 2017.

Types

Macronutrients

Macronutrients are defined in several ways.[2]

Macronutrients provide energy:

Biomolecule Kilocalories per 1 gram[5]
Protein 4
Carbohydrate 4
Ethanol 7[4]
Fat 9

Micronutrients

Micronutrients are essential dietary elements required in varying quantities throughout life to serve metabolic and physiological functions.[6][7]

  • milligram amounts. As plants obtain minerals from the soil, dietary minerals derive directly from plants consumed or indirectly from edible animal sources.[8]
  • milligram amounts.[9] The importance of each dietary vitamin was first established when it was determined that a disease would develop if that vitamin was absent from the diet.[9]

Essentiality

Essential nutrients

An essential nutrient is a nutrient required for normal physiological function that cannot be synthesized in the body – either at all or in sufficient quantities – and thus must be obtained from a

metabolic processes and for the maintenance and function of tissues and organs.[13] The nutrients considered essential for humans comprise nine amino acids, two fatty acids, thirteen vitamins, fifteen minerals and choline.[13] In addition, there are several molecules that are considered conditionally essential nutrients since they are indispensable in certain developmental and pathological states.[13][14][15]

Amino acids

An essential amino acid is an amino acid that is required by an organism but cannot be synthesized

Fatty acids

Essential fatty acids (EFAs) are

alpha-linolenic acid (an omega-3 fatty acid) and linoleic acid (an omega-6 fatty acid).[19]

Vitamins and vitamers

Vitamins occur in a variety of related forms known as

cobalamin (B12). The requirement for vitamin D is conditional, as people who get sufficient exposure to ultraviolet light, either from the sun or an artificial source, synthesize vitamin D in the skin.[21]

Minerals

Minerals are the

CHON) are essential for life, they are so plentiful in food and drink that these are not considered nutrients and there are no recommended intakes for these as minerals. The need for nitrogen is addressed by requirements set for protein, which is composed of nitrogen-containing amino acids. Sulfur is essential, but again does not have a recommended intake. Instead, recommended intakes are identified for the sulfur-containing amino acids methionine and cysteine
.

The essential nutrient

trace elements for humans, listed in order of Recommended Dietary Allowance (expressed as a mass), are potassium, chloride, sodium, calcium, phosphorus, magnesium, iron, zinc, manganese, copper, iodine, chromium, molybdenum, selenium. Additionally, cobalt is a component of Vitamin B12 which is essential. There are other minerals which are essential for some plants and animals, but may or may not be essential for humans, such as boron and silicon
.

Choline

Choline is an essential nutrient.

quaternary ammonium compounds.[25][26] Choline is the parent compound of the cholines class, consisting of ethanolamine having three methyl substituents attached to the amino function.[27] Healthy humans fed artificially composed diets that are deficient in choline develop fatty liver, liver damage, and muscle damage. Choline was not initially classified as essential because the human body can produce choline in small amounts through phosphatidylcholine metabolism.[28]

Conditionally essential

Conditionally essential nutrients are certain organic molecules that can normally be synthesized by an organism, but under certain conditions in insufficient quantities. In humans, such conditions include

nucleotides are classified as conditionally essential and are particularly important in neonatal diet and metabolism.[14]

Non-essential

Non-essential nutrients are substances within foods that can have a significant impact on health.

Soluble fiber is metabolized to butyrate and other short-chain fatty acids by bacteria residing in the large intestine.[30][31][32] Soluble fiber is marketed as serving a prebiotic function with claims for promoting "healthy" intestinal bacteria.[33]

Non-nutrients

empty calorie foods because, while providing energy, they contribute no essential nutrients.[34]

By definition, phytochemicals include all nutritional and non-nutritional components of edible plants.[36] Included as nutritional constituents are provitamin A carotenoids,[37] whereas those without nutrient status are diverse polyphenols, flavonoids, resveratrol, and lignans that are present in numerous plant foods.[38] Some phytochemical compounds are under preliminary research for their potential effects on human diseases and health.[36][37][38] However, the qualification for nutrient status of compounds with poorly defined properties in vivo is that they must first be defined with a Dietary Reference Intake level to enable accurate food labeling,[39] a condition not established for most phytochemicals that are claimed to be antioxidant nutrients.[40]

Deficiencies and toxicity

See Vitamin, Mineral (nutrient), Protein (nutrient)

An inadequate amount of a nutrient is a deficiency. Deficiencies can be due to a number of causes including an inadequacy in nutrient intake, called a dietary deficiency, or any of several conditions that interfere with the utilization of a nutrient within an organism.[1] Some of the conditions that can interfere with nutrient utilization include problems with nutrient absorption, substances that cause a greater than normal need for a nutrient, conditions that cause nutrient destruction, and conditions that cause greater nutrient excretion.[1] Nutrient toxicity occurs when excess consumption of a nutrient does harm to an organism.[41]

In the United States and Canada, recommended dietary intake levels of essential nutrients are based on the minimum level that "will maintain a defined level of nutriture in an individual", a definition somewhat different from that used by the World Health Organization and Food and Agriculture Organization of a "basal requirement to indicate the level of intake needed to prevent pathologically relevant and clinically detectable signs of a dietary inadequacy".[42]

In setting human nutrient guidelines, government organizations do not necessarily agree on amounts needed to avoid deficiency or maximum amounts to avoid the risk of toxicity.

tolerable upper intake levels, also referred to as upper limits (ULs), based on amounts that cause adverse effects. Governments are slow to revise information of this nature. For the U.S. values, with the exception of calcium and vitamin D, all of the data date from 1997 to 2004.[17]

Nutrient U.S. EAR[43] Highest U.S.
RDA or AI[43]
Highest EU
PRI or AI[47]
Upper limit Unit
U.S.[43] EU [44] Japan[45]
Vitamin A 625 900 1300 3000 3000 2700 µg
Vitamin C 75 90 155 2000 ND ND mg
Vitamin D 10 15 15 100 100 100 µg
Vitamin K NE 120 70 ND ND ND µg
α-tocopherol (Vit E) 12 15 13 1000 300 650-900 mg
Thiamin
(Vit B1)
1.0 1.2 0.1 mg/MJ ND ND ND mg
Riboflavin (Vit B2) 1.1 1.3 2.0 ND ND ND mg
Niacin
* (Vit B3)
12 16 1.6 mg/MJ 35 10 60-85 mg
Pantothenic acid (Vit B5) NE 5 7 ND ND ND mg
Vitamin B6 1.1 1.3 1.8 100 25 40-60 mg
Biotin (Vit B7) NE 30 45 ND ND ND µg
Folate (Vit B9) 320 400 600 1000 1000 900-1000 µg
Cobalamin
(Vit B12)
2.0 2.4 5.0 ND ND ND µg
Choline NE 550 520 3500 ND ND mg
Calcium 800 1000 1000 2500 2500 2500 mg
Chloride NE 2300 NE 3600 ND ND mg
Chromium NE 35 NE ND ND ND µg
Copper 700 900 1600 10000 5000 10000 µg
Fluoride NE 4 3.4 10 7 ____ mg
Iodine 95 150 200 1100 600 3000 µg
Iron 6 18 (females)
8 (males)
16 (females)
11 (males)
45 ND 40-45 mg
Magnesium* 350 420 350 350 250 350 mg
Manganese NE 2.3 3.0 11 ND 11 mg
Molybdenum 34 45 65 2000 600 450-550 µg
Phosphorus 580 700 640 4000 ND 3000 mg
Potassium NE 4700 4000 ND ND 2700-3000 mg
Selenium 45 55 70 400 300 330-460 µg
Sodium NE 1500 NE 2300 ND 3000-3600 mg
Zinc 9.4 11 16.3 40 25 35-45 mg

* The daily recommended amounts of niacin and magnesium are higher than the tolerable upper limit because, for both nutrients, the ULs identify the amounts which will not increase risk of adverse effects when the nutrients are consumed as a serving of a dietary supplement. Magnesium supplementation above the UL may cause diarrhea. Supplementation with niacin above the UL may cause flushing of the face and a sensation of body warmth. Each country or regional regulatory agency decides on a safety margin below when symptoms may occur, so the ULs may differ based on source.[43][44]

EAR U.S. Estimated Average Requirements.

RDA U.S. Recommended Dietary Allowances; higher for adults than for children, and may be even higher for women who are pregnant or lactating.

AI U.S. Adequate Intake; AIs established when there is not sufficient information to set EARs and RDAs.

PRI Population Reference Intake is European Union equivalent of RDA; higher for adults than for children, and may be even higher for women who are pregnant or lactating. For Thiamin and Niacin, the PRIs are expressed as amounts per megajoule (239 kilocalories) of food energy consumed.

Upper Limit Tolerable upper intake levels.

ND ULs have not been determined.

NE EARs, PRIs or AIs have not yet been established or will not be (EU does not consider chromium an essential nutrient).

Plant

Plant nutrients consist of more than a dozen minerals absorbed through roots, plus carbon dioxide and oxygen absorbed or released through leaves. All organisms obtain all their nutrients from the surrounding environment.[48][49]

Plants absorb carbon, hydrogen and oxygen from air and soil in the form of

organisms.[52]
They are sourced from inorganic matter (for example, carbon dioxide, water, nitrates, phosphates, sulfates, and diatomic molecules of nitrogen and, especially, oxygen) and organic matter (carbohydrates, lipids, proteins).

See also

References

  1. ^ . Retrieved 12 October 2010.
  2. . Retrieved 12 October 2010.
  3. ^ "31.1C: Essential Nutrients for Plants". Biology LibreTexts. 2018-07-16. Retrieved 2020-08-16.
  4. ^
    USDA
    . August 2013. p. 14.
  5. ^ "Chapter 3: Calculation Of The Energy Content Of Foods – Energy Conversion Factors". Food and Agriculture Organization of the United Nations. Retrieved 30 March 2017.
  6. PMID 27032981
    .
  7. .
  8. ^ "Minerals". Corvallis, OR: Micronutrient Information Center, Linus Pauling Institute, Oregon State University. 2023. Retrieved 18 May 2023.
  9. ^ a b "Vitamins". Corvallis, OR: Micronutrient Information Center, Linus Pauling Institute, Oregon State University. 2023. Retrieved 18 May 2023.
  10. ^ "What is an essential nutrient?". NetBiochem Nutrition, University of Utah.
  11. . Retrieved 13 October 2010.
  12. .
  13. ^ .
  14. ^ .
  15. .
  16. .
  17. ^ a b "Dietary Reference Intakes: The Essential Guide to Nutrient Requirements". Institute of Medicine's Food and Nutrition Board. Archived from the original on 5 July 2014. Retrieved 14 July 2014.
  18. .
  19. ^ Ellie W, Rolfes SR (2008). Understanding Nutrition (11th ed.). California: Thomson Wadsworth. p. 154.
  20. S2CID 7031925
    .
  21. ^ "Vitamin D". Micronutrient Information Center, Linus Pauling Institute, Oregon State University, Corvallis. 11 February 2021. Retrieved 14 March 2022.
  22. ^ "Dietary Intakes of Choline" (PDF). usda.gov. United States Department of Agriculture. Retrieved May 8, 2021.
  23. ^ "Choline". nih.gov. National Institutes of Health. Retrieved May 8, 2021.
  24. PMID 19906248
    .
  25. ^ Choline. The Metabolomics Innovation Centre, University of Alberta, Edmonton, Canada. 17 August 2016. Retrieved 13 September 2016. {{cite encyclopedia}}: |website= ignored (help)
  26. ^ Britannica, The Editors of Encyclopaedia. "choline". Encyclopedia Britannica, 11 Dec. 2013, https://www.britannica.com/science/choline. Accessed 17 February 2022.
  27. ^ National Center for Biotechnology Information (2022). PubChem Compound Summary for CID 305, Choline. Retrieved February 17, 2022 from https://pubchem.ncbi.nlm.nih.gov/compound/Choline.
  28. ^ "Choline". Micronutrient Information Center. Oregon State University. 28 April 2014. Retrieved May 8, 2021.
  29. ^ "High-Fiber Diet - Colon & Rectal Surgery Associates". www.colonrectal.org. Archived from the original on 2020-09-26. Retrieved 2020-08-16.
  30. PMID 24757212
    .
  31. .
  32. .
  33. .
  34. ^ . Retrieved 2 January 2020.
  35. ^ ""What We Eat in America, NHANES 2013-2014"" (PDF).
  36. ^ a b "Phytochemicals". Micronutrient Information Center, Linus Pauling Institute, Oregon State University, Corvallis, OR. February 2016. Retrieved 31 December 2017.
  37. ^ a b "Carotenoids". Micronutrient Information Center, Linus Pauling Institute, Oregon State University, Corvallis, OR. August 2016. Retrieved 31 December 2017.
  38. ^ a b "Flavonoids". Micronutrient Information Center, Linus Pauling Institute, Oregon State University, Corvallis, OR. February 2016. Retrieved 31 December 2017.
  39. ^ "Nutrient content claims--general principles; 21CFR101.13". US Food and Drug Administration. 1 April 2017. Retrieved 31 December 2017.
  40. ^ Gross P (1 March 2009). "New Roles for Polyphenols. A 3-Part Report on Current Regulations and the State of Science". Nutraceuticals World.
  41. PMID 7312225
    .
  42. . Retrieved 31 December 2017.
  43. ^ a b c d e "Dietary Reference Intakes (DRIs)" (PDF). Food and Nutrition Board, Institute of Medicine, National Academies. Archived from the original (PDF) on 11 September 2018.
  44. ^ a b c Tolerable Upper Intake Levels For Vitamins And Minerals (PDF), European Food Safety Authority, 2006
  45. ^ a b Dietary Reference Intakes for Japanese (2010) National Institute of Health and Nutrition, Japan
  46. ^ "Nutrient Requirements and Recommended Dietary Allowances for Indians: A Report of the Expert Group of the Indian Council of Medical Research. pp.283-295 (2009)" (PDF). Archived from the original (PDF) on 15 June 2016. Retrieved 31 December 2017.
  47. ^ Whitney, Elanor and Sharon Rolfes. 2005. Understanding Nutrition, 10th edition, p. 6. Thomson-Wadsworth.
  48. . Retrieved 12 October 2010.
  49. . Retrieved 14 October 2010.
  50. . Retrieved 17 August 2010.
  51. ^ New Link in Chain of Life,
    Wall Street Journal
    , 2010-12-03, accessed 5 December 2010. "Until now, however, they were all thought to share the same biochemistry, based on the Big Six, to build proteins, fats, and DNA."

External links