Fas receptor

Source: Wikipedia, the free encyclopedia.
FAS
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_001146708
NM_007987

RefSeq (protein)

NP_000034
NP_001307548
NP_690610
NP_690611

NP_001140180
NP_032013

Location (UCSC)Chr 10: 88.95 – 89.03 MbChr 19: 34.29 – 34.33 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

The Fas receptor, also known as Fas, FasR, apoptosis antigen 1 (APO-1 or APT),

tumor necrosis factor receptor superfamily member 6 (TNFRSF6), is a protein that in humans is encoded by the FAS gene.[5][6] Fas was first identified using a monoclonal antibody generated by immunizing mice with the FS-7 cell line. Thus, the name Fas is derived from FS-7-associated surface antigen.[7]

The Fas receptor is a

death receptor on the surface of cells that leads to programmed cell death (apoptosis) if it binds its ligand, Fas ligand (FasL). It is one of two apoptosis pathways, the other being the mitochondrial pathway.[8]

Gene

FAS receptor gene is located on the long arm of

mammals
.

Protein

Previous reports have identified as many as eight splice variants, which are translated into seven

haplotypes that are usually associated with a state of disease. However, two isoforms, the apoptosis-inducing membrane-bound form and the soluble form, are normal products whose production via alternative splicing is regulated by the cytotoxic RNA binding protein TIA1.[10]

The mature Fas protein has 319 amino acids, has a predicted molecular weight of 48 kilodaltons and is divided into three domains: an

extracellular domain, a transmembrane domain, and a cytoplasmic domain. The extracellular domain has 157 amino acids and is rich in cysteine
residues. The transmembrane and cytoplasmic domains have 17 and 145 amino acids respectively. Exons 1 through 5 encode the extracellular region. Exon 6 encodes the transmembrane region. Exons 7-9 encode the intracellular region.

Function

Fas forms the death-inducing signaling complex (DISC) upon ligand binding. Membrane-anchored Fas ligand trimer on the surface of an adjacent cell causes oligomerization of Fas. Recent studies which suggested the trimerization of Fas could not be validated. Other models suggested the oligomerization up to 5–7 Fas molecules in the DISC.[11] This event is also mimicked by binding of an agonistic Fas antibody, though some evidence suggests that the apoptotic signal induced by the antibody is unreliable in the study of Fas signaling. To this end, several clever ways of trimerizing the antibody for in vitro research have been employed.

Upon ensuing death domain (DD) aggregation, the receptor complex is internalized via the cellular endosomal machinery. This allows the adaptor molecule FADD to bind the death domain of Fas through its own death domain.[12]

FADD also contains a

proteolytic cleavage
into p10 and p18 subunits, two each of which form the active heterotetramer enzyme. Active caspase-8 is then released from the DISC into the cytosol, where it cleaves other effector caspases, eventually leading to DNA degradation, membrane blebbing, and other hallmarks of apoptosis.

Recently, Fas has also been shown to promote tumor growth, since during tumor progression, it is frequently downregulated or cells are rendered apoptosis resistant. Cancer cells in general, regardless of their Fas apoptosis sensitivity, depend on constitutive activity of Fas. This is stimulated by cancer-produced Fas ligand for optimal growth.[14]

Although Fas has been shown to promote tumor growth in the above mouse models, analysis of the human cancer genomics database revealed that FAS is not significantly focally amplified across a dataset of 3131 tumors (FAS is not an

tumor suppressor
in humans.

In cultured cells, FasL induces various types of cancer cell apoptosis through the Fas receptor. In AOM-DSS-induced colon carcinoma and MCA-induced sarcoma mouse models, it has been shown that Fas acts as a tumor suppressor.

CAR-T cells,[20] similar to additional in vitro work using bispecific antibodies performed at Amgen.[21]

Role in apoptosis

Some reports have suggested that the extrinsic Fas pathway is sufficient to induce complete apoptosis in certain cell types through DISC assembly and subsequent caspase-8 activation. These cells are dubbed Type 1 cells and are characterized by the inability of anti-apoptotic members of the Bcl-2 family (namely Bcl-2 and Bcl-xL) to protect from Fas-mediated apoptosis. Characterized Type 1 cells include H9, CH1, SKW6.4 and SW480, all of which are lymphocyte lineages except the latter, which is a colon adenocarcinoma lineage. However, evidence for crosstalk between the extrinsic and intrinsic pathways exists in the Fas signal cascade.

In most cell types, caspase-8 catalyzes the cleavage of the pro-apoptotic BH3-only protein

Bax to translocate to the outer mitochondrial membrane, thus permeabilizing it and facilitating release of pro-apoptotic proteins such as cytochrome c and Smac/DIABLO, an antagonist of inhibitors of apoptosis
proteins (IAPs).

Overview of signal transduction pathways involved in apoptosis.

Interactions

Fas receptor has been shown to

interact
with:

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000026103Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000024778Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. PMID 1385299
    .
  6. .
  7. .
  8. .
  9. ^ "OrthoMaM phylogenetic marker: FAS coding sequence". Archived from the original on 2016-03-03. Retrieved 2009-12-02.
  10. PMID 16109372
    .
  11. .
  12. .
  13. .
  14. .
  15. ^ "Tumorscape". The Broad Institute. Archived from the original on 2012-04-14. Retrieved 2012-07-05.
  16. PMID 22669972
    .
  17. .
  18. .
  19. .
  20. .
  21. .
  22. ^ .
  23. ^ .
  24. ^ .
  25. .
  26. .
  27. .
  28. .
  29. .
  30. .
  31. .
  32. .
  33. .
  34. .
  35. .

Further reading

External links