Fatty-acid amide hydrolase 1

Source: Wikipedia, the free encyclopedia.
(Redirected from
Fatty acid amide hydrolase
)
FAAH
Identifiers
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_001441

NM_010173

RefSeq (protein)

NP_001432

NP_034303

Location (UCSC)Chr 1: 46.39 – 46.41 MbChr 4: 115.82 – 115.88 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Fatty-acid amide hydrolase 1 (FAAH)[5] is a member of the serine hydrolase family of enzymes. It was first shown to break down anandamide (AEA), an N-acylethanolamine (NAE) in 1993.[6] In humans, it is encoded by the gene FAAH.[7][8][9]

Function

FAAH is an integral membrane hydrolase with a single N-terminal transmembrane domain. In vitro, FAAH has esterase and amidase activity.[10] In vivo, FAAH is the principal catabolic enzyme for a class of bioactive lipids called the fatty acid amides (FAAs). Members of the FAAs include:

FAAH

exogenous anandamide, a cannabinoid receptor (CB) agonist.[11]

Due to the ability of FAAH to regulate nociception, it is currently viewed as an attractive drug target for the treatment of pain.[17][18][19]

Studies in cells and animals and genetic studies in humans have shown that inhibiting FAAH may be a useful strategy to treat

anxiety disorders,[20][21][22] as inhibition produce analgesic, anxiolytic, neuroprotective, and anti-inflammatory effects by elevated N-acylethanolamines (NAE's) and their activation of cannabinoid receptors.[23]

Inhibitors and inactivators

Activation of the

Based on the hydrolytic mechanism of fatty acid amide hydrolase, a large number of irreversible and reversible inhibitors of this enzyme have been developed.[25][26][27][28][29][30][31][32]

Some of the more significant compounds are listed below;

Inhibition and binding

Structural and conformational properties that contribute to enzyme inhibition and substrate binding imply an extended bound conformation, and a role for the presence, position, and stereochemistry of a delta cis double bond.[48]

Enhancement of FAAH activity

Insulin medication increase the production and activity of fatty acid amide hydrolase.[49]

Genetic variants

rs324420

SNP: rs324420
Name(s)C385A, c.385C>A, p.Pro129Thr
HapMap
324420
SNPedia324420

The FAAH gene contains a

single nucleotide polymorphism (SNP) called rs324420. The variant allele, C385A, is associated with a higher sensitivity of FAAH to proteolytic degradation and a shorter half-life compared to the standard C variant. As a result, carriers of the A variant has increased N-acylethanolamine (NAE) levels and anandamide (AEA) signaling at the cannabinoid receptors. The A variant may be responsible for lower levels of the FAAH protein seen in high-performing athletes, providing increased physical and mental fitness.[50] However, among elite Polish athletes, the A variant is under-represented regardless of metabolic characteristics of their sport disciplines; this seems to suggest an opposite role for the A variant.[51]

A 2017 study found a strong correlation between national percentage of very happy people (as measured by the World Values Survey) and the presence of the rs324420 C385A allele in citizens' genetic make-up.[52]

The C385A allele was initially provisionally linked to drug abuse and dependence but this was not borne out in subsequent studies. According to later studies, carriers of the A allele are more likely to try cannabis, but less likely to become dependent.[20]: § 5.6 

FAAH-OUT microdeletion

FAAH-OUT is a

microdeletion mutation in FAAH-OUT and a rs324420 C385A mutation. The result is extreme disruption of FAAH function leading to elevated anandamide levels. She was immune to anxiety, unable to experience fear, and insensitive to pain. The frequent burns and cuts suffered due to her hypoalgesia healed quicker than average with little or no scarring.[54][55][56] Her son, who shares the FAAH-OUT deletion but has no C385A mutation, has a lesser degree of pain insensitivity.[54]

A 2023 study looks further into the functions of FAAH-OUT using transcriptomic analyses of cell models, some created anew using CRISPR-Cas9, others obtained from the 2019 patient. The study confirms that FAAH-OUT increases the expression of FAAH, both via its lncRNA product and through an

BDNF. The increased wound healing is due to both pathways: loss of FAAH function increases N-acyltaurine levels; the non-canonical Wnt pathway is also beneficial to healing.[53]

Assays

The enzyme is typically assayed making use of a radiolabelled anandamide

substrate, which generates free labelled ethanolamine, although alternative LC-MS methods have also been described.[57][58]

Structures

The first crystal structure of FAAH was published in 2002 (PDB code 1MT5).[9] Structures of FAAH with drug-like ligands were first reported in 2008, and include non-covalent inhibitor complexes and covalent adducts.[59]

Regulation

In slime molds

The slime mold Dictyostelium discoideum produces a semispecific FAAH inhibitor. By controlling the levels of FAAH activity, they modulate endogenous N-acylethanolamine levels.[23]

Enzyme classification

In the Enzyme Commission numbering scheme, "fatty acid amide hydrolase" is EC 3.5.1.99. The number applies to all enzymes that have the chemical activity; in humans it covers both the genes FAAH and FAAH2. The systematic name is "fatty acylamide amidohydrolase". Recorded synonyms include "oleamide hydrolase", "anandamide amidohydrolase".[60]

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000117480Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000034171Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "UniProt". www.uniprot.org. Retrieved 18 July 2023.
  6. PMID 8373432
    .
  7. .
  8. .
  9. ^ .
  10. .
  11. ^ .
  12. .
  13. .
  14. .
  15. .
  16. .
  17. .
  18. .
  19. .
  20. ^ .
  21. .
  22. .
  23. ^ .
  24. .
  25. .
  26. .
  27. .
  28. .
  29. .
  30. .
  31. .
  32. .
  33. . Retrieved 16 January 2016.
  34. .
  35. .
  36. .
  37. ^ "Janssen Research & Development, LLC Voluntarily Suspends Dosing in Phase 2 Clinical Trials of Experimental Treatment for Mood Disorders". Janssen.com. 17 January 2016. Archived from the original on 25 January 2016. Retrieved 21 January 2016.
  38. PMID 16314570
    .
  39. .
  40. ^ .
  41. .
  42. ^ Clinical trial number NCT00822744 for "An Eight-week Study of SSR411298 as Treatment for Major Depressive Disorder in Elderly Patients (FIDELIO)" at ClinicalTrials.gov
  43. ^ "Clinical trials for SSR411298". EU Clinical Trials Register.
  44. PMID 19515560
    .
  45. ^ Clinical trial number NCT01748695 for "A Safety, Tolerability and Efficacy Study of V158866 in Central Neuropathic Pain Following Spinal Cord Injury" at ClinicalTrials.gov
  46. ^ US granted 8450346, Roughly S, Walls S, Hart T, Parsons R, Brough P, Graham C, Macias A, "Azetidine derivatives as FAAH inhibitors", published 28 May 2013, assigned to Vernalis (R&D) Ltd. 
  47. PMID 22209458
    .
  48. .
  49. .
  50. .
  51. .
  52. .
  53. ^ .
  54. ^ .
  55. ^ Murphy H (28 March 2019). "At 71, She's Never Felt Pain or Anxiety. Now Scientists Know Why". The New York Times. Retrieved 29 March 2019.
  56. ^ Sample I (28 March 2019). "Scientists find genetic mutation that makes woman feel no pain". The Guardian. Retrieved 29 March 2019.
  57. PMID 20694697
    .
  58. .
  59. .
  60. ^ "KEGG ENZYME: 3.5.1.99". www.genome.jp.

External links