Femur

Source: Wikipedia, the free encyclopedia.
Femur
vastus intermedius
InsertionsGluteus maximus, gluteus medius, gluteus minimus, iliopsoas, lateral rotator group, adductors of the hip
Articulationship: acetabulum of pelvis superiorly
knee: with the tibia and patella inferiorly
Identifiers
Latinos femoris, os longissimum
MeSHD005269
TA98A02.5.04.001
TA21360
FMA9611
Anatomical terms of bone]

The femur (

hindleg
.

The top of the femur fits into a socket in the pelvis called the hip joint, and the bottom of the femur connects to the shinbone (tibia) and kneecap (patella) to form the knee. In humans the femur is the largest and thickest bone in the body.

Structure

The femur is the only bone in the upper

pelvic bones
, causing their femora to converge more than in males.

In the condition genu valgum (knock knee) the femurs converge so much that the knees touch one another. The opposite extreme is genu varum (bow-leggedness). In the general population of people without either genu valgum or genu varum, the femoral-tibial angle is about 175 degrees.[3]

The femur is the largest and thickest bone in the human body. By some tested measures,[

ethnic groups with only restricted variation, and is useful in anthropology because it offers a basis for a reasonable estimate of a subject's height from an incomplete skeleton
.

The femur is categorised as a long bone and comprises a diaphysis (shaft or body) and two epiphyses (extremities) that articulate with adjacent bones in the hip and knee.[3]

Upper part

neck, and the greater and lesser trochanter

The

trochanters and adjacent structures.[3]
The upper extremity is the shortest femoral extremity, the lower extremity is the thickest femoral extremity.

The

neck or collum. The neck is 4–5 cm. long and the diameter is smallest front to back and compressed at its middle. The collum forms an angle with the shaft in about 130 degrees. This angle is highly variant. In the infant it is about 150 degrees and in old age reduced to 120 degrees on average. An abnormal increase in the angle is known as coxa valga and an abnormal reduction is called coxa vara. Both the head and neck of the femur is vastly embedded in the hip musculature and can not be directly palpated. In skinny people with the thigh laterally rotated, the head of the femur can be felt deep as a resistance profound (deep) for the femoral artery.[3]

The transition area between the head and neck is quite rough due to attachment of muscles and the

hip joint. The greater trochanter can easily be felt. The trochanteric fossa
is a deep depression bounded posteriorly by the intertrochanteric crest on the medial surface of the greater trochanter. The lesser trochanter is a cone-shaped extension of the lowest part of the femur neck. The two trochanters are joined by the intertrochanteric crest on the back side and by the intertrochanteric line on the front.[3]

A slight ridge is sometimes seen commencing about the middle of the intertrochanteric crest, and reaching vertically downward for about 5 cm. along the back part of the body: it is called the

linea quadrata
(or quadrate line).

About the junction of the upper one-third and lower two-thirds on the intertrochanteric crest is the quadrate tubercle located. The size of the tubercle varies and it is not always located on the intertrochanteric crest and that also adjacent areas can be part of the quadrate tubercle, such as the posterior surface of the greater trochanter or the neck of the femur. In a small anatomical study it was shown that the epiphyseal line passes directly through the quadrate tubercle.[5]

Body

The femur details

The body of the femur (or shaft) is large, thick and almost cylindrical in form. It is a little broader above than in the center, broadest and somewhat flattened from before backward below. It is slightly arched, so as to be convex in front, and concave behind, where it is strengthened by a prominent longitudinal ridge, the linea aspera which diverges proximally and distal as the medial and lateral ridge. Proximally the lateral ridge of the linea aspera becomes the gluteal tuberosity while the medial ridge continues as the pectineal line. Besides the linea aspera the shaft has two other bordes; a lateral and medial border. These three bordes separates the shaft into three surfaces: One anterior, one medial and one lateral. Due to the vast musculature of the thigh the shaft can not be palpated.[3]

The third trochanter is a bony projection occasionally present on the proximal femur near the superior border of the gluteal tuberosity. When present, it is oblong, rounded, or conical in shape and sometimes continuous with the gluteal ridge.[6] A structure of minor importance in humans, the incidence of the third trochanter varies from 17–72% between ethnic groups and it is frequently reported as more common in females than in males.[7]

Lower part

Lower extremity of right femur viewed from below.
knee joint
from behind, showing interior ligaments.

The

condyles.[3]

Anteriorly, the condyles are slightly prominent and are separated by a smooth shallow articular depression called the patellar surface. Posteriorly, they project considerably and a deep notch, the

intercondyloid fossa. This fossa is limited above by a ridge, the intercondyloid line, and below by the central part of the posterior margin of the patellar surface. The posterior cruciate ligament of the knee joint is attached to the lower and front part of the medial wall of the fossa and the anterior cruciate ligament to an impression on the upper and back part of its lateral wall.[3]

The articular surface of the lower end of the femur occupies the anterior, inferior, and posterior surfaces of the condyles. Its front part is named the patellar surface and articulates with the patella; it presents a median groove which extends downward to the intercondyloid fossa and two convexities, the lateral of which is broader, more prominent, and extends farther upward than the medial.[3]

Each condyle is surmounted by an elevation, the

knee-joint.[3]

Development

The femur develops from the limb buds as a result of interactions between the ectoderm and the underlying mesoderm; formation occurs roughly around the fourth week of development.[8]

By the sixth week of development, the first

embryonic period and primary ossification centers are present in all long bones of the limbs, including the femur, by the 12th week of development. The hindlimb development lags behind forelimb
development by 1–2 days.

Function

As the femur is the only bone in the thigh, it serves as an attachment point for all the muscles that exert their force over the hip and knee joints. Some

plantaris
muscles – also originate from the femur. In all, 23 individual muscles either originate from or insert onto the femur.

In cross-section, the thigh is divided up into three separate

posterior fascial compartments
.

Muscle attachments

Muscle attachments
(seen from the front)
Muscle attachments
(seen from the back)
Muscle Direction Attachment[9]
Iliacus muscle Insertion Lesser trochanter
Psoas major muscle Insertion Lesser trochanter
Gluteus maximus muscle
Insertion Gluteal tuberosity
Gluteus medius muscle
Insertion Lateral surface of greater trochanter
Gluteus minimus muscle
Insertion Forefront of greater trochanter
Piriformis muscle Insertion Superior boundary of greater trochanter
Gemellus superior muscle
Insertion Upper edge of
Obturator internus's tendon (indirectly greater trochanter
)
Obturator internus muscle Insertion Medial surface of greater trochanter
Gemellus inferior muscle
Insertion Lower edge of
Obturator internus's tendon (indirectly greater trochanter
)
Quadratus femoris muscle Insertion Intertrochanteric crest
Obturator externus muscle
Insertion Trochanteric fossa
Pectineus muscle Insertion Pectineal line
Adductor longus muscle Insertion Medial ridge of linea aspera
Adductor brevis muscle Insertion Medial ridge of linea aspera
Adductor magnus muscle Insertion Medial ridge of linea aspera and the adductor tubercle
Vastus lateralis muscle Origin Greater trochanter and lateral ridge of linea aspera
Vastus intermedius muscle Origin Front and lateral surface of femur
Vastus medialis muscle
Origin Distal part of intertrochanteric line and medial ridge of linea aspera
Short head of biceps femoris Origin Lateral ridge of linea aspera
Popliteus muscle Origin Under the lateral epicondyle
Articularis genu muscle
Origin Lower 1/4 of anterior femur deep to vastus intermedius
Gastrocnemius muscle Origin Behind the adductor tubercle, over the lateral epicondyle and the popliteal facies
Plantaris muscle Origin Over the
lateral condyle

Clinical significance

Fractures

A

shaft of the femur immediately below the lesser trochanter may be classified as a hip fracture, especially when associated with osteoporosis. Femur fractures can be managed in a pre-hospital setting with the use of a traction splint
.

Diversity among animals

Femora of Moa chicks.

In primitive tetrapods, the main points of muscle attachment along the femur are the internal trochanter and third trochanter, and a ridge along the ventral surface of the femoral shaft referred to as the adductor crest. The neck of the femur is generally minimal or absent in the most primitive forms, reflecting a simple attachment to the acetabulum. The greater trochanter was present in the extinct archosaurs, as well as in modern birds and mammals, being associated with the loss of the primitive sprawling gait. The lesser trochanter is a unique development of mammals, which lack both the internal and fourth trochanters. The adductor crest is also often absent in mammals or alternatively reduced to a series of creases along the surface of the bone.[10] Structures analogous to the third trochanter are present in mammals, including some primates.[7]

Some species of whales,[11] snakes, and other non-walking vertebrates have vestigial femurs. In some snakes the protruding end of a pelvic spur, a vestigial pelvis and femur remnant which is not connected to the rest of the skeleton, plays a role in mating. This role in mating is hypothesized to have possibly occurred in Basilosauridae, an extinct family of whales with well-defined femurs, lower legs and feet. Occasionally, the genes that code for longer extremities cause a modern whale to develop miniature legs (atavism).[12]

One of the earliest known vertebrates to have a femur is the

Late Devonian
period.

Viral metagenomics

A recent study revealed that bone is a much richer source of persistent DNA viruses than earlier perceived. Besides Parvovirus 19 and hepatitis B virus, ten additional ones were discovered, namely several members of the herpes- and polyomavirus families, as well as human papillomavirus 31 and torque teno virus. [13]

Invertebrates

In

prefemur
, connects the trochanter and femur.

Additional media

  • 3D image
    3D image
  • Muscles of thigh. Lateral view.
    Muscles of thigh. Lateral view.
  • Muscles of thigh. Cross section.
    Muscles of thigh. Cross section.
  • Distribution forces of the femur
    Distribution forces of the femur
  • Femur Anatomy

References

  1. ^ "femora". Merriam-Webster.com Dictionary.
  2. ^ "femora". Dictionary.com Unabridged (Online). n.d.
  3. ^ .
  4. PMID 2252082.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  5. .
  6. .
  7. ^ a b Bolanowski, Wojciech; Śmiszkiewicz-Skwarska, Alicja; Polguj, Michał; Jędrzejewski, Kazimierz S (2005). "The occurrence of the third trochanter and its correlation to certain anthropometric parameters of the human femur" (PDF). Folia Morphol. 64 (3): 168–175.
    PMID 16228951
    .
  8. ^ Gilbert, Scott F. "Developmental Biology". 9th ed., 2010
  9. .
  10. .
  11. .
  12. .
  13. .

External links

  • Media related to Femur at Wikimedia Commons
  • The dictionary definition of Femur at Wiktionary
  • The dictionary definition of thighbone at Wiktionary
This page is based on the copyrighted Wikipedia article: Femur. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy