Ferrihydrite

Source: Wikipedia, the free encyclopedia.
Ferrihydrite
Formula mass
168.70 g/mol
ColorDark brown, yellow-brown
Crystal habitAggregates, microscopic crystals
StreakYellow-brown
DiaphaneityOpaque
Density3.8 g/cm3
References[2][3][4][5]
X-ray diffraction patterns for six-line and two-line ferrihydrite.
X-ray diffraction patterns for six-line (top) and two-line (bottom) ferrihydrite. Cu Kα radiation.

Ferrihydrite (Fh) is a widespread hydrous ferric oxyhydroxide

living organisms, for the purpose of intra-cellular iron storage.[10][11]

Structure

Ferrihydrite only exists as a fine grained and highly defective

hydrous ferric oxides
(HFO).

Due to the nanoparticulate nature of ferrihydrite, the structure has remained elusive for many years and is still a matter of controversy.

octahedral Fe occupancies, (2) defective crystallites (d-phase) with a short-range feroxyhite-like (δ-FeOOH) structure, and (3) subordinate ultradisperse hematite (α-Fe2O3). The diffraction model has been confirmed in 2002 by neutron diffraction,[21] and the three components were observed by high-resolution transmission electron microscopy.[22][23][24] A single phase model for both ferrihydrite and hydromaghemite[25] has been proposed by Michel et al.,[26][27] in 2007–2010, based on pair distribution function (PDF) analysis of x-ray total scattering data. The structural model, isostructural with the mineral akdalaite (Al10O14(OH)2), contains 20% tetrahedrally and 80% octahedrally coordinated iron. Manceau et al. showed in 2014[28] that the Drits et al.[12] model reproduces the PDF data as well as the Michel et al.[26] model, and he suggested in 2019[20] that the tetrahedral coordination arises from maghemite and magnetite impurities observed by electron microscopy.[23][29][30]

Porosity and environmental absorbent potential

Because of the small size of individual

fulvic acids).[32][33][34][35] Its strong and extensive interaction with trace metals and metalloids is used in industry, at large-scale in water purification plants, as in North Germany and to produce the city water at Hiroshima, and at small scale to clean wastewaters and groundwaters, for example to remove arsenic from industrial effluents and drinking water.[36][37][38][39][40] Its nanoporosity and high affinity for gold can be used to elaborate Fh-supported nanosized Au particles for the catalytic oxidation of CO at temperatures below 0 °C.[41] Dispersed six-line ferrihydrite nanoparticles can be entrapped in a vesicular state to increase their stability.[42]

Metastability

Ferrihydrite is a

Under reducing conditions as those found in

fougerite
. However, a short exposure of green rust to atmospheric oxygen is sufficient to oxidize it back to ferrihydrite, making it a very elusive compound.

  • Ferrihydrite precipitate from coal mine water
    Ferrihydrite precipitate from
    coal mine
    water
  • Spring in the Zillertaler Alps with Fh precipitate
    Spring in the
    Zillertaler Alps
    with Fh precipitate
  • Seepage of iron-rich water
    Seepage of iron-rich water

See also

Better crystallized and less hydrated iron oxy-hydroxides are amongst others:

References

  1. S2CID 235729616
    .
  2. ^ "Ferrihydrite Mineral Data". webmineral.com. Retrieved 2011-10-24.
  3. ^ "Ferrihydrite mineral information and data". mindat.org. Retrieved 2011-10-24.
  4. ^ Handbook of Mineralogy
  5. ^ Mineralienatlas
  6. ^ J. L. Jambor, J.E. Dutrizac, Chemical Reviews, 98, 22549–2585 (1998)
  7. ^ R. M. Cornell R.M., U. Schwertammn, The iron oxides: structure, properties, reactions, occurrences and uses, Wiley–VCH, Weinheim, Germany (2003)
  8. ^ M. Maurette, Origins of Life and Evolution of the Biosphere, 28, 385–412 (1998)
  9. ^ D. Fortin, S. Langley, Earth-Science Reviews, 72, 1–19 (2005)
  10. ^ N. D. Chasteen, P. M. Harrison, Journal of Structural Biology, 126, 182–194 (1999)
  11. ^ A. Lewin, G. R. Moore, N. E. Le Brun, Dalton Transactions, 22, 3597–3610 (2005)
  12. ^ a b c V. A. Drits, B. A. Sakharov, A. L. Salyn, et al. Clay Minerals, 28, 185–208 (1993)
  13. ^ A. Manceau A., V. A. Drits, Clay Minerals, 28, 165–184 (1993)
  14. ^ F. V. Chuckrov, B. B. Zvyagin, A.I. Gorshov, et al. International Geology Review, 16, 1131–1143 (1973)
  15. ^ M. Fleischer, G. Y. Chao, A. Kato (1975): American Mineralogist, volume 60
  16. ^ D. G. Rancourt, J. F. Meunier, American Mineralogist, 93, 1412–1417 (2008)
  17. ^ A. Manceau. American Mineralogist, 96, 521–533 (2011)
  18. ^
  19. ^ E. Jansen, A. Kyek, W. Schafer, U. Schwertmann. Appl. Phys. A: Mater. Sci. Process., 74, S1004–S1006 (2002)
  20. ^ D.E. Janney, J.M. Cowley, P.R. Buseck. American Mineralogist, 85, 1180–1187 (2000)
  21. ^ a b D.E. Janney, J.M. Cowley, P.R. Buseck. American Mineralogist, 86, 327–335 (2001).
  22. ^ A. Manceau. Clay Minerals, 44, 19–34 (2009)
  23. ^ V. Barron, J. Torrent, E. de Grave American Mineralogist, 88, 1679–1688 (2003)
  24. ^ a b F. M. Michel, L. Ehm, S. M. Antao, et al. Science, 316, 1726–1729 (2007)
  25. ^ F. M. Michel, V. Barron, J. Torrent, et al. PNAS, 107, 2787–2792 (2010)
  26. ^ X. J. M. Cowley, D. E. Janney, R. C. Gerkin, P. R. Buseck, P. R., Journal of Structural Biology 131, 210–216 (2000)
  27. ^ Z D. E. Janney, J. M. Cowley, P. R. Buseck, Clays Clay Miner., 48, 111–119 (200)
  28. ^ T. Hiemstra, W. H. Van Riemsdijk, Geochimica et Cosmochimica Acta, 73, 4423–4436 (2009)
  29. ^ A. L. Foster, G. E. Brown, T. N. Tingle, et al. American Mineralogist, 83, 553–568 (1998)
  30. ^ A. H. Welch, D. B. Westjohn, D. R. Helsel, et al. Ground Water, 38, 589–604 (2000)
  31. ^ M. F. Hochella, T. Kasama, A. Putnis, et al. American Mineralogist, 90, 718–724 (2005)
  32. ^ D. Postma, F. Larsen, N. T. M. Hue, et al. Geochimica et Cosmochimica Acta, 71, 5054–5071 (2007)
  33. ^ P. A. Riveros J. E. Dutrizac, P. Spencer, Canadian Metallurgical Quarterly, 40, 395–420 (2001)
  34. ^ O. X. Leupin S. J. Hug, Water Research, 39, 1729–1740 (2005)
  35. ^ S. Jessen, F. Larsen, C. B. Koch, et al. Environmental Science & Technology, 39, 8045–8051 (2005)
  36. ^ a b A. Manceau, M. Lanson, N. Geoffroy, Geochimica et Cosmochimic Acta, 71, 95–128 (2007)
  37. ^ D. Paktunc, J. Dutrizac, V. Gertsman, Geochimica et Cosmochimica Acta, 72, 2649–2672
  38. ^ N. A. Hodge, C. J. Kiely, R. Whyman, et al. Catalysis Today, 72, 133–144 (2002)
  39. ^ L. Gentile, Journal of Colloid and Interface Science, https://doi.org/10.1016/j.jcis.2021.09.192 (2021)
  40. ^ U. Schwertmann, E. Murad, Clays Clay Minerals, 31, 277 (1983)
  41. ^ U. Schwertmann, J. Friedl, H. Stanjek, Journal of Colloid and Interface Science, 209, 215–223 (1999)
  42. ^ U. Schwertmann, H. Stanjek, H.H. Becher, Clay Miner. 39, 433–438 (2004)
  43. S2CID 93994327
    .
  44. ^ W. R. Fischer, U. Schwertmann, Clays and Clay Minerals, 23, 33 (1975)
  45. ^ J. F. Banfield, S. A. Welch, H. Z. Zhang, et al. Science, 289, 751–754 (2000)
  46. ^ L. Carlson, U. Schwertmann, Geochimica et Cosmochimica Acta, 45, 421-429 (1981)