Fertile material

Source: Wikipedia, the free encyclopedia.
LWR.[1]
Speed of transmutation varies greatly by nuclide, and percentages are relative to total transmutation and decay. After removal of fuel from reactor, decay will predominate for shorter-lived isotopes such as 238Pu, 241Pu, 242–244Cm; but 245–248Cm are all long-lived.

Fertile material is a material that, although not fissile itself, can be converted into a fissile material by neutron absorption.

Naturally occurring fertile materials

Naturally occurring fertile materials that can be converted into a fissile material by irradiation in a reactor include:

Artificial isotopes formed in the reactor which can be converted into fissile material by one neutron capture include:

Some other

actinides
need more than one neutron capture before arriving at an isotope which is both fissile and long-lived enough to probably be able to capture another neutron and fission instead of decaying.

Since these require a total of 3 or 4 thermal neutrons to eventually fission, and a thermal neutron fission generates only about 2 to 3 neutrons, these nuclides represent a net loss of neutrons. A

fast reactor
, those nuclides may require fewer neutrons to achieve fission, as well as producing more neutrons when they do fission. However, there is also the chance of (n,2n) or even (n,3n) "knockout" reactions (an incident fast neutron hits a nucleus and more than one neutron leaves) with fast neutrons which are not possible with thermal neutrons.

Fissile materials from fertile materials

A

fast breeder reactor
.

Applications

Proposed applications for fertile material includes a space-based facility for the manufacture of fissile material for

uranium enrichment which requires the chemically aggressive volatile fluorine to prepare uranium hexafluoride
as used in the current enrichment technology.

References