Flying and gliding animals

Source: Wikipedia, the free encyclopedia.

Anser anser). Birds are one of only four taxonomic groups to have evolved powered flight
.

A number of

reptiles
have also evolved this gliding flight ability, typically as a means of evading predators.

Types

Animal aerial locomotion can be divided into two categories: powered and unpowered. In unpowered modes of locomotion, the animal uses aerodynamic forces exerted on the body due to wind or falling through the air. In powered flight, the animal uses muscular power to generate aerodynamic forces to climb or to maintain steady, level flight. Those who can find air that is rising faster than they are falling can gain altitude by soaring.

Unpowered

These modes of locomotion typically require an animal start from a raised location, converting that potential energy into kinetic energy and using aerodynamic forces to control trajectory and angle of descent. Energy is continually lost to drag without being replaced, thus these methods of locomotion have limited range and duration.

Powered flight

Powered

theropod dinosaurs do suggest multiple (≥3) independent acquisitions of powered flight however,[1][2] and a recent study proposes independent acquisitions amidst the different bat clades as well.[3] Powered flight uses muscles to generate aerodynamic force
, which allows the animal to produce lift and thrust. The animal may ascend without the aid of rising air.

Externally powered

Ballooning and soaring are not powered by muscle, but rather by external aerodynamic sources of energy: the wind and rising thermals, respectively. Both can continue as long as the source of external power is present. Soaring is typically only seen in species capable of powered flight, as it requires extremely large wings.

Many species will use multiple of these modes at various times; a hawk will use powered flight to rise, then soar on thermals, then descend via free-fall to catch its prey.

Evolution and ecology

Gliding and parachuting

While gliding occurs independently from powered flight,[4] it has some ecological advantages of its own as it is the simplest form of flight.[5] Gliding is a very energy-efficient way of travelling from tree to tree. Although moving through the canopy running along the branches may be less energetically demanding, the faster transition between trees allows for greater foraging rates in a particular patch.[6] Glide ratios can be dependent on size and current behavior. Higher foraging rates are supported by low glide ratios as smaller foraging patches require less gliding time over shorter distances and greater amounts of food can be acquired in a shorter time period.[6] Low ratios are not as energy efficient as the higher ratios,[5] but an argument made is that many gliding animals eat low energy foods such as leaves and are restricted to gliding because of this, whereas flying animals eat more high energy foods such as fruits, nectar, and insects.[7] Mammals tend to rely on lower glide ratios to increase the amount of time foraging for lower energy food.[8] An equilibrium glide, achieving a constant airspeed and glide angle, is harder to obtain as animal size increases. Larger animals need to glide from much higher heights and longer distances to make it energetically beneficial.[9] Gliding is also very suitable for predator avoidance, allowing for controlled targeted landings to safer areas.[10][9] In contrast to flight, gliding has evolved independently many times (more than a dozen times among extant vertebrates); however these groups have not radiated nearly as much as have groups of flying animals.

Worldwide, the distribution of gliding animals is uneven, as most inhabit rain forests in Southeast Asia. (Despite seemingly suitable rain forest habitats, few gliders are found in India or New Guinea and none in Madagascar.) Additionally, a variety of gliding vertebrates are found in Africa, a family of hylids (flying frogs) lives in South America and several species of gliding squirrels are found in the forests of northern Asia and North America.[11] Various factors produce these disparities. In the forests of Southeast Asia, the dominant canopy trees (usually dipterocarps) are taller than the canopy trees of the other forests. Forest structure and distance between trees are influential in the development of gliding within varying species.[8] A higher start provides a competitive advantage of further glides and farther travel. Gliding predators may more efficiently search for prey. The lower abundance of insect and small vertebrate prey for carnivorous animals (such as lizards) in Asian forests may be a factor.[11] In Australia, many mammals (and all mammalian gliders) possess, to some extent, prehensile tails. Globally, smaller gliding species tend to have feather-like tails and larger species have fur covered round bushy tails,[10] but smaller animals tend to rely on parachuting rather than developing gliding membranes.[9] The gliding membranes, patagium, are classified in the 4 groups of propatagium, digipatagium, plagiopatagium and uropatagium. These membranes consist of two tightly bounded layers of skin connected by muscles and connective tissue between the fore and hind limbs.[10]

Powered flight evolution

Aves
)

Powered flight has evolved unambiguously only four times—

insects (though see above for possible independent acquisitions within bird and bat groups). In contrast to gliding, which has evolved more frequently but typically gives rise to only a handful of species, all three extant groups of powered flyers have a huge number of species, suggesting that flight is a very successful strategy once evolved. Bats, after rodents, have the most species of any mammalian order, about 20% of all mammalian species.[12] Birds have the most species of any class of terrestrial vertebrates. Finally, insects
(most of which fly at some point in their life cycle) have more species than all other animal groups combined.

The evolution of flight is one of the most striking and demanding in animal evolution, and has attracted the attention of many prominent scientists and generated many theories. Additionally, because flying animals tend to be small and have a low mass (both of which increase the surface-area-to-mass ratio), they tend to fossilize infrequently and poorly compared to the larger, heavier-boned terrestrial species they share habitat with. Fossils of flying animals tend to be confined to exceptional fossil deposits formed under highly specific circumstances, resulting in a generally poor fossil record, and a particular lack of transitional forms. Furthermore, as fossils do not preserve behavior or muscle, it can be difficult to discriminate between a poor flyer and a good glider.

Insects were the first to evolve flight, approximately 350 million years ago. The developmental origin of the insect wing remains in dispute, as does the purpose prior to true flight. One suggestion is that wings initially evolved from tracheal gill structures and were used to catch the wind for small insects that live on the surface of the water, while another is that they evolved from paranotal lobes or leg structures and gradually progressed from parachuting, to gliding, to flight for originally arboreal insects.[13]

Pterosaurs were the next to evolve flight, approximately 228 million years ago. These reptiles were close relatives of the dinosaurs, and reached enormous sizes, with some of the last forms being the largest flying animals ever to inhabit the Earth, having wingspans of over 9.1 m (30 ft). However, they spanned a large range of sizes, down to a 250 mm (10 in) wingspan in Nemicolopterus
.

Birds have an extensive fossil record, along with many forms documenting both their evolution from small theropod dinosaurs and the numerous bird-like forms of theropod which did not survive the mass extinction at the end of the Cretaceous. Indeed, Archaeopteryx is arguably the most famous transitional fossil in the world, both due to its mix of reptilian and avian anatomy and the luck of being discovered only two years after Darwin's publication of On the Origin of Species. However, the ecology of this transition is considerably more contentious, with various scientists supporting either a "trees down" origin (in which an arboreal ancestor evolved gliding, then flight) or a "ground up" origin (in which a fast-running terrestrial ancestor used wings for a speed boost and to help catch prey). It may also have been a non-lnear process, as several non-avian dinosaurs seem to have independently acquired powered flight.[14][15]

Bats are the most recent to evolve (about 60 million years ago), most likely from a fluttering ancestor,[16] though their poor fossil record has hindered more detailed study.

Only a few animals are known to have specialised in soaring: the larger of the extinct pterosaurs, and some large birds. Powered flight is very energetically expensive for large animals, but for soaring their size is an advantage, as it allows them a low wing loading, that is a large wing area relative to their weight, which maximizes lift.[17] Soaring is very energetically efficient.

Biomechanics

Gliding and parachuting

During a free-fall with no aerodynamic forces, the object accelerates due to gravity, resulting in increasing velocity as the object descends. During parachuting, animals use the aerodynamic forces on their body to counteract the force or gravity. Any object moving through air experiences a drag force that is proportion to surface area and to velocity squared, and this force will partially counter the force of gravity, slowing the animal's descent to a safer speed. If this drag is oriented at an angle to the vertical, the animal's trajectory will gradually become more horizontal, and it will cover horizontal as well as vertical distance. Smaller adjustments can allow turning or other maneuvers. This can allow a parachuting animal to move from a high location on one tree to a lower location on another tree nearby. Specifically in gliding mammals, there are 3 types of gliding paths respectively being S glide, J glide, and "straight-shaped" glides where species either gain altitude post launch then descend, rapidly decrease height before gliding, and maintaining a constant angled descent.[10]

During gliding, lift plays an increased role. Like drag, lift is proportional to velocity squared. Gliding animals will typically leap or drop from high locations such as trees, just as in parachuting, and as gravitational acceleration increases their speed, the aerodynamic forces also increase. Because the animal can utilize lift and drag to generate greater aerodynamic force, it can glide at a shallower angle than parachuting animals, allowing it to cover greater horizontal distance in the same loss of altitude, and reach trees further away. Successful flights for gliding animals are achieved through 5 steps: preparation, launch, glide, braking, and landing. Gliding species are better able to control themselves mid-air, with the tail acting as a rudder, making it capable to pull off banking movements or U-turns during flight.[10] During landing, arboreal mammals will extend their fore and hind limbs in front of itself to brace for landing and to trap air in order to maximize air resistance and lower impact speed.[10]

Powered flight

Large milkweed bug flying, repeated at one fifteenth speed.

Unlike most air vehicles, in which the objects that generate lift (wings) and thrust (engine or propeller) are separate and the wings remain fixed, flying animals use their wings to generate both lift and thrust by moving them relative to the body. This has made the flight of organisms considerably harder to understand than that of vehicles, as it involves varying speeds, angles, orientations, areas, and flow patterns over the wings.

A bird or bat flying through the air at a constant speed moves its wings up and down (usually with some fore-aft movement as well). Because the animal is in motion, there is some airflow relative to its body which, combined with the velocity of its wings, generates a faster airflow moving over the wing. This will generate lift force vector pointing forwards and upwards, and a drag force vector pointing rearwards and upwards. The upwards components of these counteract gravity, keeping the body in the air, while the forward component provides thrust to counteract both the drag from the wing and from the body as a whole. Pterosaur flight likely worked in a similar manner, though no living pterosaurs remain for study.

fling-and-clap or Weis-Fogh mechanism in which the wings clap together above the insect's body and then fling apart. As they fling open, the air gets sucked in and creates a vortex over each wing. This bound vortex then moves across the wing and, in the clap, acts as the starting vortex for the other wing. Circulation and lift are increased, at the price of wear and tear on the wings.[19][20]

Limits and extremes

Flying and soaring

Comparison of Quetzalcoatlus northropi with a Cessna 172 light aircraft
Airborne flying squirrel.

Gliding and parachuting

Flying animals

Extant

A bee in flight.

Insects

  • Pterygota: The first of all animals to evolve flight, they are also the only invertebrates that have evolved flight. As they comprise almost all insects, the species are too numerous to list here. Insect flight is an active research field.
Birds are a successful group of flying vertebrate.

Birds

  • Birds (flying, soaring) – Most of the approximately 10,000 living species can fly (flightless birds are the exception). Bird flight is one of the most studied forms of aerial locomotion in animals. See List of soaring birds for birds that can soar as well as fly.
Townsends's big-eared bat
, (Corynorhinus townsendii) displaying the "hand wing"

Mammals

  • Bats. There are approximately 1,240 bat species, representing about 20% of all classified mammal species.[33] Most bats are nocturnal and many feed on insects while flying at night, using echolocation to home in on their prey.[34]

Extinct

Pterosaurs included the largest known flying animals

Pterosaurs

  • Pterosaurs were the first flying vertebrates, and are generally agreed to have been sophisticated flyers. They had large wings formed by a patagium stretching from the torso to a dramatically lengthened fourth finger. There were hundreds of species, most of which are thought to have been intermittent flappers, and many soarers. The largest known flying animals are pterosaurs.

Non-avian dinosaurs

  • Theropods (gliding and flying). There were several species of theropod dinosaur thought to be capable of gliding or flying, that are not classified as birds (though they are closely related). Some species (Microraptor gui, Microraptor zhaoianus, and Changyuraptor) have been found that were fully feathered on all four limbs, giving them four 'wings' that they are believed to have used for gliding or flying. A recent study indicates that flight may have been acquired independently in various different lineages[2] though it may have only evolved in theropods of the Avialae
    .

Gliding animals

Extant

Insects

Spiders

Neon flying squid

Molluscs

  • Pacific flying squid, will leap out of the water to escape predators, an adaptation similar to that of flying fish.[38] Smaller squids will fly in shoals, and have been observed to cover distances as long as 50 metres (160 ft). Small fins towards the back of the mantle do not produce much lift, but do help stabilize the motion of flight. They exit the water by expelling water out of their funnel, indeed some squid have been observed to continue jetting water while airborne providing thrust even after leaving the water. This may make flying squid the only animals with jet-propelled aerial locomotion.[39] The neon flying squid has been observed to glide for distances over 30 metres (100 ft), at speeds of up to 11.2 metres per second (37 ft/s).[40]
pectoral fins

Fish

  • pectoral fins while gliding, but does not use a power strike like flying animals.[43] It has been found that some flying fish can glide as effectively as some flying birds.[44]
  • live bearers
    • Halfbeaks. A group related to the Exocoetidae, one or two hemirhamphid species possess enlarged pectoral fins and show true gliding flight rather than simple leaps. Marshall (1965) reports that Euleptorhamphus viridis can cover 50 metres (160 ft) in two separate hops.[45]
    • Trinidadian guppies have been observed exhibiting a gliding response to escape predator's [46][47][48]
  • Freshwater butterflyfish (possibly gliding). Pantodon buchholzi has the ability to jump and possibly glide a short distance. It can move through the air several times the length of its body. While it does this, the fish flaps its large pectoral fins, giving it its common name.[49] However, it is debated whether the freshwater butterfly fish can truly glide, Saidel et al. (2004) argue that it cannot.
  • Freshwater hatchetfish. In the wild, they have been observed jumping out of the water and gliding[50] (although reports of them achieving powered flight has been brought up many times[51][52][53]).
Illustration of Wallace's flying frog in Alfred Russel Wallace's 1869 book The Malay Archipelago

Amphibians

Gliding has evolved independently in two families of tree frogs, the Old World Rhacophoridae and the New World Hylidae. Within each lineage there are a range of gliding abilities from non-gliding, to parachuting, to full gliding.

Reptiles

Several lizards and snakes are capable of gliding:

  • Lupersaurus flying geckos. A possible sister-taxon to Ptychozoon which has similar flaps and folds and also glides.[58]
  • Thecadactylus flying geckos. At least some species of Thecadactylus, such as T. rapicauda, are known to glide.[58]
  • Cosymbotus
    .
  • paradise tree snake of southern Thailand, Malaysia, Borneo, Philippines, and Sulawesi
    is the most capable glider of those snakes studied. It glides by stretching out its body sideways and opening its ribs so the belly is concave, and by making lateral slithering movements. It can remarkably glide up to 100 metres (330 ft) and make 90 degree turns.
  • Mammals

    Bats are the only freely flying mammals.[59] A few other mammals can glide or parachute; the best known are flying squirrels and flying lemurs.

    Extinct

    Reptiles

    • Life restoration of the Weigeltisaurid Weigeltisaurus jaekeli from the Late Permian (259-252 million years ago). Weigeltisaurids represent the oldest known gliding vertebrates
      Extinct reptiles similar to Draco. There are a number of unrelated extinct lizard-like reptiles with similar "wings" to the Draco lizards. These include the Late Permian Weigeltisauridae, the Triassic Kuehneosauridae and Mecistotrachelos,[75] and the Cretaceous lizard Xianglong. The largest of these, Kuehneosaurus, has a wingspan of 30 centimetres (12 in), and was estimated to be able to glide about 30 metres (100 ft).
    • flying-squirrel-like patagia significantly. The forelimbs are in contrast much smaller.[76]

    Non-avian dinosaurs

    • Life restoration of Yi qi a gliding scansoriopterygid dinosaur from the Middle Jurassic of China.
      Scansoriopterygidae is unique among dinosaurs for the development of membranous wings, unlike the feathered airfoils of other theropods. Much like modern anomalures it developed a bony rod to help support the wing, albeit on the wrist and not the elbow.

    Fish

    • Permian-Triassic extinction event
      .
    Volaticotherids
    predate bats as mammalian aeronauts by at least 110 million years

    Mammals

    • eutriconodont, long considered the earliest gliding mammal until the discovery of contemporary gliding haramiyidans. It lived around 164 million years ago and used a fur-covered skin membrane to glide through the air.[78] The closely related Argentoconodon is also thought to have been able to glide, based on postcranial similarities; it lived around 165 million years ago, during the Middle-Late Jurassic of what is now China[79]
    • The haramiyidans Vilevolodon, Xianshou, Maiopatagium and Arboroharamiya known from the Middle-Late Jurassic of China had extensive patagia, highly convergent with those of colugos.[80]
    • A gliding metatherian (possibly a marsupial) is known from the Paleocene of Itaboraí, Brazil.[81]
    • A gliding rodent belonging to the extinct family
      Eomys quercyi is known from the late Oligocene of Germany.[82]

    See also

    References

    1. PMID 32763170
      .
    2. ^ .
    3. .
    4. ^ Ivan Semeniuk (5 November 2011). "New theory on bat flight has experts a-flutter".
    5. ^
      PMID 23256188
      .
    6. ^ .
    7. ^ "Life in the Rainforest". Archived from the original on 9 July 2006. Retrieved 15 April 2006.
    8. ^ .
    9. ^ .
    10. ^ .
    11. ^ .
    12. ^ Simmons, N.B.; D.E. Wilson, D.C. Reeder (2005). Mammal Species of the World: A Taxonomic and Geographic Reference. Baltimore, MD: Johns Hopkins University Press. pp. 312–529.
    13. S2CID 19849219
      .
    14. ^ Hartman, Scott; Mortimer, Mickey; Wahl, William R.; Lomax, Dean R.; Lippincott, Jessica; Lovelace, David M. (10 July 2019). "A new paravian dinosaur from the Late Jurassic of North America supports a late acquisition of avian flight". PeerJ. 7: e7247. doi:10.7717/peerj.7247. PMC 6626525. PMID 31333906.
    15. ^ Kiat, Yosef; O’Connor, Jingmai K. (20 February 2024). "Functional constraints on the number and shape of flight feathers". Proceedings of the National Academy of Sciences. 121 (8). doi:10.1073/pnas.2306639121. ISSN 0027-8424.
    16. S2CID 84015350
      .
    17. ^ "Vertebrate Flight". Retrieved 15 April 2006.
    18. S2CID 55341336
      .
    19. ^ .
    20. ^ .
    21. .
    22. .
    23. .
    24. .
    25. ^ Photopoulos, Julianna (9 November 2016). "Speedy bat flies at 160 km/h, smashing bird speed record". New Scientist. Retrieved 11 November 2016. But not everyone is convinced. Graham Taylor at the University of Oxford says that errors in estimating bat speed by measuring the distance moved between successive positions could be huge. "So I think it would be premature to knock birds off their pedestal as nature's fastest fliers just yet," he says. "These bats are indeed flying very fast at times, but this is based on their ground speed," says Anders Hedenström at the University of Lund in Sweden. "Since they did not measure winds at the place and time where the bats are flying, one can therefore not exclude that the top speeds are not bats flying in a gust."
    26. .
    27. ^ "Ruppell's griffon vulture". Smithsonian's National Zoo. 25 April 2016. Retrieved 21 September 2020.
    28. ^ Pennisi, Elizabeth (3 September 2019). "This bird really can fly over Mount Everest, wind tunnel experiments reveal". Science | AAAS. Retrieved 21 September 2020.
    29. ^ "Fillipone". Archived from the original on 24 September 2015. Retrieved 30 October 2012.
    30. ^ Lu, Donna. "Flying snakes wiggle their bodies to glide down smoothly from trees". New Scientist. Retrieved 21 September 2020.
    31. PMID 11683437
      .
    32. .
    33. .
    34. ^ Basic Biology (2015). "Bats".
    35. PMID 19324632
      .
    36. .
    37. ^ "Scientist Discovers Rainforest Ants That Glide". Newswise. Retrieved 15 April 2006.
    38. S2CID 85088231
      .
    39. .
    40. ^ "The news hub". 16 January 2012.
    41. ^
      Greenwood Press
      .
    42. ^ "Fast flying fish glides by ferry". 20 May 2008. Retrieved 5 March 2023 – via news.bbc.co.uk.
    43. ^ "Vertebrate Flight: gliding and parachuting". Retrieved 15 April 2006.
    44. ^ "Flying fish perform as well as some birds". Los Angeles Times. 11 September 2010. Retrieved 5 March 2023.
    45. ^ Marshall, N.B. (1965) The Life of Fishes. London: Weidenfeld & Nicolson. 402 pp.
    46. PMID 23613883
      .
    47. ^ "trinidadian guppies poecilia: Topics by Science.gov". www.science.gov. Retrieved 13 January 2023.
    48. ^ Poecilia reticulata (Guppy)
    49. .
    50. ^ . 14 January 2023 https://web.archive.org/web/20230114001218/https://d1wqtxts1xzle7.cloudfront.net/50102765/2001Videlerb-libre.pdf?1478273987=&response-content-disposition=inline;+filename=Fish_locomotion.pdf&Expires=1673655620&Signature=eRas7abQ181AUhI4Ut7g1~5FPbOypY5EP56bFO9zZPOMH-pzJIWEWGgmzcMaINmrCuP9r1ZtOkq3nO8BwSyWgnh4jjJc9mpNQ5JEHdlli4~qW8r7Xa-Tuduf8VpSuv3fDcqg8jeANUhigtlEx82~3GU8PXXWu2KxiRNGWH3UkzLQXBlMaEM5jK59gZrtK9q6dn8PRYPQmKzlowp4koZDKRMnQbK07qlvAvOlK2ulFZvhJNShzRrE04v2L7bqaeRsImIZMB9F2-sCLYtnw9JzkKhyPTmBj~xSalrM0sfUzIp1jSbj0pVzirtGwMzJvGskfIFJNoWfEbORKEzC5bodsg__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA. Archived from the original (PDF) on 14 January 2023. Retrieved 5 March 2023. {{cite web}}: Missing or empty |title= (help)
    51. S2CID 34720887
      .
    52. .
    53. .
    54. .
    55. .
    56. ^ Walker, Matt (17 July 2009). "Tiny lizard falls like a feather". BBC Earth News.
    57. ^ a b c "Ptychozoon: the geckos that glide with flaps and fringes (gekkotans part VIII) – Tetrapod Zoology". Archived from the original on 10 June 2010. Retrieved 7 June 2010.
    58. ^ Magazine, Smithsonian; Black, Riley. "Why Bats Are One of Evolution's Greatest Puzzles". Smithsonian Magazine. Retrieved 5 March 2023.
    59. ^
      S2CID 55719726
      .
    60. .
    61. .
    62. ^ "Darren Naish: Tetrapod Zoology: Literally, flying lemurs (and not dermopterans)". Retrieved 5 March 2023.
    63. ^ "Literally, flying lemurs (and not dermopterans) – Tetrapod Zoology". Archived from the original on 16 August 2010. Retrieved 5 March 2023.
    64. ^ Gliding Possums – Environment, New South Wales Government
    65. ^ Serventy, Vincent (editor) – "Australia's Wildlife Heritage", published by Paul Hamlyn Pty. Ltd., Sydney, 1975
    66. ^ Myers, Phil. "Family Pseudocheiridae". Retrieved 15 April 2006.
    67. ^ Mosher, Dave (12 June 2007). "Ancient Gliding Reptile Discovered". LiveScience.
    68. ^ Dzik, J.; Sulej, Tomasz (2016). "An early Late Triassic long-necked reptile with a bony pectoral shield and gracile appendages" (PDF). Acta Palaeontologica Polonica. 64 (4): 805–823.
    69. ^ Renesto, Silvo; Spielmann, Justin A.; Lucas, Spencer G.; Spagnoli, Giorgio Tarditi. The taxonomy and paleobiology of the Late Triassic (Carnian-Norian: Adamanian-Apachean) drepnosaurs (Diapsida: Archosauromorpha: Drepanosauromorpha): Bulletin 46. New Mexico Museum of Natural History and Science.
    70. ^ "Earliest flying mammal discovered". 13 December 2006. Retrieved 5 March 2023 – via news.bbc.co.uk.
    71. S2CID 85069761
      .
    72. .
    73. .
    74. .

    Further reading

    External links