Follicular phase

Source: Wikipedia, the free encyclopedia.
Follicular phase
Figure 1. Menstrual cycle illustrating hormone levels, follicle development and uterine cycle
Biological systemUrogenital system(reproductive)


The follicular phase, also known as the preovulatory phase or proliferative phase,

luteinising hormones. They are released by pulsatile secretion.[1] The duration of the follicular phase can differ depending on the length of the menstrual cycle, while the luteal phase
is usually stable, does not really change and lasts 14 days.

Hormonal events

Protein secretion

Due to the increase of FSH, the protein

inhibin B will be secreted by the granulosa cells. Inhibin B will eventually blunt the secretion of FSH toward the end of the follicular phase. Inhibin B levels will be highest during the LH surge before ovulation and will quickly decrease after.[1]

Follicle recruitment

Figure 2. Follicular phase diagram of hormones and their origins

Follicle-stimulating hormone (FSH) is secreted by the anterior pituitary gland (Figure 2). FSH secretion begins to rise in the last few days of the previous menstrual cycle,[3] and is the highest and most important during the first week of the follicular phase[4] (Figure 1). The rise in FSH levels recruits five to seven tertiary-stage ovarian follicles (this stage follicle is also known as a Graafian follicle or antral follicle) for entry into the menstrual cycle. These follicles, that have been growing for the better part of a year in a process known as folliculogenesis, compete with each other for dominance.[5]

FSH induces the proliferation of

p450 enzymes are activated, causing the granulosa cells to begin to secrete estrogen. This increased level of estrogen stimulates production of gonadotropin-releasing hormone (GnRH), which increases production of LH.[4] LH induces androgen synthesis by thecal cells, stimulates proliferation, differentiation, and secretion of follicular thecal cells and increases LH receptor expression on granulosa cells.[4]

Throughout the entire follicular phase, rising estrogen levels in the blood stimulates growth of the endometrium and myometrium of the uterus.[6] It also causes endometrial cells to produce receptors for progesterone,[6] which helps prime the endometrium to respond to rising levels of progesterone during the late proliferative phase and throughout the luteal phase.

Estrogen surge

Two or three days before LH levels begin to increase,[7] usually by day seven of the cycle,[8] one (or occasionally two) of the recruited follicles has emerged as dominant. Many endocrinologists believe that the estrogen secretion of the dominant follicle has increased to a level that GnRH production is suppressed, which lowers the levels of LH and FSH. This slowdown in LH and FSH production leads to the atresia (death) of most of the recruited follicles, though the dominant follicle continues to mature. Estrogen levels will continue to increase for several days (on average, six days, but this varies widely).[7]

These high estrogen levels initiate the formation of a new layer of

cervical mucus.[7] This mucus reduces the acidity of the vagina, creating a more hospitable environment for sperm.[9] It also has a characteristic texture that helps guide sperm through the cervix[10] and to the fallopian tubes, where they wait for ovulation.[medical citation needed] In addition, basal body temperature may lower slightly under the influence of high estrogen levels.[11]

LH surge and ovulation

Estrogen levels are highest right before the

oocytes is completed. The surge also initiates luteinization of thecal and granulosa cells.[4] Ovulation normally occurs 30 (± 2) hours after the beginning of the LH surge (when LH is first detectable in urine).[13]

Follicular waves

Follicular waves are best described as the phase when follicles have matured sufficiently and rupture, leading to ovulation. Recent findings into the menstrual cycle in mammals has discovered that 2 or more follicles can develop but only one of the follicles fully matures to release the egg.[14][15] This follicular wave involves multiple surges in the levels of FSH to initiate follicular development. A study has found that 68% of women tended to display two follicular wave developments before ovulation while the remaining had three waves.[16]

References

  1. ^
    PMID 31194386.  This article incorporates text available under the CC BY 4.0
    license.
  2. ^ "Primate | Definition, Biology, & Facts | Britannica". 3 January 2024.
  3. PMID 25905282
    .
  4. ^ .
  5. ^ McGee, E.A., & Hsueh, A.J. (2000). Initial and cyclic recruitment of ovarian follicles. Endocrine Reviews, 200-214, 21(2). doi: 10.1210/edrv.21.2.0394
  6. ^
    ISBN 0-07-111677-X.{{cite book}}: CS1 maint: multiple names: authors list (link
    )
  7. ^ .
  8. .
  9. ^ Weschler (2002), p.57
  10. ^ Weschler (2002), illustrations p.59 and p.3 of color insert
  11. ^ Weschler (2002), pp.54,306,310
  12. ^ Weschler (2002), p.65
  13. S2CID 40401379
    .
  14. .
  15. .
  16. .