Fossil history of flowering plants

Source: Wikipedia, the free encyclopedia.

The fossil history of flowering plants records the development of

abominable mystery
".

Paleozoic

Fossilised

reproduced sexually with flagellated, swimming sperm, like the green algae from which they evolved.[citation needed] An adaptation to terrestrial life was the development of upright sporangia for dispersal by spores to new habitats.[citation needed] This feature is lacking in the descendants of their nearest algal relatives, the Charophycean green algae. A later terrestrial adaptation took place with retention of the delicate, avascular sexual stage, the gametophyte, within the tissues of the vascular sporophyte.[citation needed] This occurred by spore germination within sporangia rather than spore release, as in non-seed plants. A current example of how this might have happened can be seen in the precocious spore germination in Selaginella, the spike-moss. The result for the ancestors of angiosperms and gymnosperms
was enclosing the female gamete in a case, the seed. The first seed-bearing plants were gymnosperms, like the ginkgo, and conifers (such as pines and firs). These did not produce flowers. The pollen grains (male gametophytes) of Ginkgo and cycads produce a pair of flagellated, mobile sperm cells that "swim" down the developing pollen tube to the female and her eggs.

Angiosperms appear suddenly and in great diversity in the fossil record in the Early Cretaceous.

seed ferns, have been proposed as the ancestors of flowering plants, but there is no continuous fossil evidence showing how flowers evolved.[4]

Several claims of pre-Cretaceous angiosperm fossils have been made, such as the upper

Sanmiguelia lewisi, but none of these are widely accepted by paleobotanists.[5] Oleanane, a secondary metabolite produced by many flowering plants, has been found in Permian deposits of that age together with fossils of gigantopterids.[6][7] Gigantopterids are a group of extinct seed plants that share many morphological traits with flowering plants.[8] Molecular evidence suggests that the ancestors of angiosperms diverged from the gymnosperms during the late Devonian, about 365 million years ago.[9]

Triassic and Jurassic

Based on fossil evidence, some have proposed that the ancestors of the angiosperms diverged from an unknown group of gymnosperms in the Triassic period (245–202 million years ago). Fossil angiosperm-like pollen from the Middle Triassic (247.2–242.0 Ma) suggests an older date for their origin, which is further supported by genetic evidence of the ancestors of angiosperms diverging during the Devonian.

gnetophytes, proposed on the basis of morphological evidence, has more recently been disputed on the basis of molecular evidence that suggest gnetophytes are instead more closely related to conifers and other gymnosperms.[11][12]

The evolution of seed plants and later angiosperms appears to be the result of two distinct rounds of

Many paleobotanists consider the

stem-group angiosperm.[17] Other researchers contend that the structures are misinterpreted decomposed conifer cones.[18][19]

Cretaceous

Whereas the earth had previously been dominated by ferns and conifers, angiosperms quickly spread during the Cretaceous. They now comprise about 90% of all plant species including most food crops.[20] It has been proposed that the swift rise of angiosperms to dominance was facilitated by a reduction in their genome size. During the early Cretaceous period, only angiosperms underwent rapid genome downsizing, while genome sizes of ferns and gymnosperms remained unchanged. Smaller genomes—and smaller nuclei—allow for faster rates of cell division and smaller cells. Thus, species with smaller genomes can pack more, smaller cells—in particular veins and stomata[21]—into a given leaf volume. Genome downsizing therefore facilitated higher rates of leaf gas exchange (transpiration and photosynthesis) and faster rates of growth. This would have countered some of the negative physiological effects of genome duplications, facilitated increased uptake of carbon dioxide despite concurrent declines in atmospheric CO2 concentrations, and allowed the flowering plants to outcompete other land plants.[22]

The oldest known fossils definitively attributable to angiosperms are reticulated monosulcate pollen from the late Valanginian (Early or Lower Cretaceous - 140 to 133 million years ago) of Italy and Israel, likely representing basal angiosperms.[18]

The earliest known

years BP (the Cretaceous period),[23] whereas pollen considered to be of angiosperm origin takes the fossil record back to about 130 million years BP,[2] with Montsechia representing the earliest flower at that time.[24]

Adaptive radiation in the Cretaceous created many flowering plants, such as Sagaria in the Ranunculaceae.

In 2013 flowers encased in amber were found and dated 100 million years before present. The amber had frozen the act of sexual reproduction in the process of taking place. Microscopic images showed tubes growing out of pollen and penetrating the flower's stigma. The pollen was sticky, suggesting it was carried by insects.

Bayesian analysis of 52 angiosperm taxa suggested that the crown group of angiosperms evolved between 178 million years ago and 198 million years ago.[27]

Amborellales, Nymphaeales, and Austrobaileyales diverged as separate lineages from the remaining angiosperm clade at a very early stage in flowering plant evolution.[31]

The great angiosperm radiation, when a great diversity of angiosperms appears in the fossil record, occurred in the mid-Cretaceous, approximately 100 million years ago. However, a study in 2007 estimated that the divergence of the five most recent of the eight main groups, namely the genus Ceratophyllum, the family Chloranthaceae, the eudicots, the magnoliids, and the monocots, occurred around 140 million years ago.[32]

bees, which evolved specifically due to mutualistic plant relationships, are descended from wasps.[33] The paleontologist Robert T. Bakker has proposed that flowering plants might have evolved due to interactions with dinosaurs. He argued that herbivorous dinosaurs provided a selective grazing pressure on plants.[34]

By the late Cretaceous, angiosperms appear to have dominated environments formerly occupied by

cycadophytes. Large canopy-forming trees replaced conifers as the dominant trees close to the end of the Cretaceous, 66 million years ago or even later, at the beginning of the Paleogene.[35] The radiation of herbaceous angiosperms occurred much later.[36] Yet, many fossil plants recognisable as belonging to modern families (including beech, oak, maple, and magnolia) had already appeared by the late Cretaceous. Flowering plants appeared in Australia about 126 million years ago. This also pushed the age of ancient Australian vertebrates, in what was then a south polar continent, to 126–110 million years old.[24]

References

  1. .
  2. ^ .
  3. .
  4. ^ Briggs, H. (23 January 2021). "New light shed on Darwin's 'Abominable Mystery'". BBC News. Archived from the original on 30 January 2021. Retrieved 31 January 2021.
  5. PMID 31538196
    .
  6. .
  7. ^ "Oily Fossils Provide Clues To The Evolution Of Flowers". ScienceDaily. Stanford University. 5 April 2001. Archived from the original on 19 August 2010. Retrieved 28 February 2018.
  8. from the original on 4 November 2012. Retrieved 9 November 2021.
  9. ^ from the original on 10 January 2022. Retrieved 10 January 2022.
  10. .
  11. .
  12. .
  13. S2CID 4313258.{{cite journal}}: CS1 maint: numeric names: authors list (link
    )
  14. from the original on 21 April 2021. Retrieved 21 February 2022.
  15. .
  16. .
  17. .
  18. ^ .
  19. .
  20. ^ Briggs, H. (14 January 2018). "How flowering plants conquered the world". BBC News. Archived from the original on 2 February 2021. Retrieved 31 January 2021.
  21. PMID 29324757
    .
  22. .
  23. .
  24. ^ a b "When flowers reached Australia: First blooms made it to Australia 126 millions years ago". ScienceDaily. Archived from the original on 21 December 2019. Retrieved 21 December 2019.
  25. ^ Poinar, George O. Jr.; Chambers, Kenton .L; Wunderlich, Joerg (10 December 2013). "Micropetasos, a new genus of angiosperms from mid-Cretaceous Burmese amber". J. Bot. Res. Inst. Texas. 7 (2): 745–750. Archived from the original on 5 January 2014. The presence of pollen grains on the style and calyx but not in the surrounding amber suggests that the grains may have been adhesive
  26. PMID 28763051
    .
  27. .
  28. ^ "First Flower". NOVA. PBS. April 17, 2007. Transcripts.
  29. PMID 21653455
    .
  30. ^ "South Pacific plant may be missing link in evolution of flowering plants". EurekAlert!. AAAS. 17 May 2006. Archived from the original on 24 July 2021. Retrieved 21 February 2022.
  31. PMID 21486926
    .
  32. .
  33. from the original on 5 February 2016. Retrieved 8 January 2016.
  34. .
  35. from the original on 23 December 2011. Retrieved 4 August 2010.
  36. .