Future of Earth

This is a good article. Click here for more information.
Source: Wikipedia, the free encyclopedia.

A dark gray and red sphere representing the Earth lies against a black background to the right of an orange circular object representing the Sun
Conjectured illustration of the scorched Earth after the Sun has entered the red giant phase, about 5–7 billion years from now[1]

The biological and geological future of Earth can be

extinction of humanity, leaving the planet to gradually return to a slower evolutionary pace resulting solely from long-term natural processes.[8][9]

Over time intervals of hundreds of millions of years, random celestial events pose a global risk to the

eccentricity, axial tilt, and precession of Earth's orbit.[10] As part of the ongoing supercontinent cycle, plate tectonics will probably result in a supercontinent in 250–350 million years. Sometime in the next 1.5–4.5 billion years, Earth's axial tilt may begin to undergo chaotic variations, with changes in the axial tilt of up to 90°.[11]

The luminosity of the Sun will steadily increase, causing a rise in the solar radiation reaching Earth and resulting in a higher rate of weathering of silicate minerals. This will affect the carbonate–silicate cycle, which will cause a decrease in the level of carbon dioxide in the atmosphere. In about 600 million years from now, the level of carbon dioxide will fall below the level needed to sustain C3 carbon fixation photosynthesis used by trees. Some plants use the C4 carbon fixation method to persist at carbon dioxide concentrations as low as ten parts per million. However, the long-term trend is for plant life to die off altogether. The extinction of plants will be the demise of almost all animal life since plants are the base of much of the animal food chain on Earth.[12][13]

In about one billion years the solar luminosity will be 10% higher, causing the atmosphere to become a "moist greenhouse", resulting in a runaway evaporation of the oceans. As a likely consequence, plate tectonics and the entire carbon cycle will end.[14] Following this event, in about 2–3 billion years, the planet's magnetic dynamo may cease, causing the magnetosphere to decay and leading to an accelerated loss of volatiles from the outer atmosphere. Four billion years from now, the increase in Earth's surface temperature will cause a runaway greenhouse effect, creating conditions more extreme than present-day Venus and heating Earth's surface enough to melt it. By that point, all life on Earth will be extinct.[15][16] Finally, the most probable fate of the planet is absorption by the Sun in about 7.5 billion years, after the star has entered the red giant phase and expanded beyond the planet's current orbit.[17]

Human influence

Horne foundry copper smelter in Rouyn-Noranda, Canada, graphically demonstrating human-generated gaseous emissions

Humans play a key role in the

biotic crisis, with an estimated 10% of the total species lost as of 2007.[6] At current rates, about 30% of species are at risk of extinction in the next hundred years.[19] The Holocene extinction event is the result of habitat destruction, the widespread distribution of invasive species, poaching, and climate change.[20][21][22] In the present day, human activity has had a significant impact on the surface of the planet. More than a third of the land surface has been modified by human actions, and humans use about 20% of global primary production.[4] The concentration of carbon dioxide in the atmosphere has increased by close to 50% since the start of the Industrial Revolution.[3][23]

The consequences of a persistent biotic crisis have been predicted to last for at least five million years.

food chains will probably be shortened.[5][24]

Anti-nuclear weapons protest march in Oxford, 1980

There are

virulent disease, the impact of an asteroid or comet, runaway greenhouse effect, and resource depletion. There may be the possibility of an infestation by an extraterrestrial lifeform.[25] The actual odds of these scenarios occurring are difficult if not impossible to deduce.[8][9]

Should the human species become extinct, then the various features assembled by humanity will begin to decay. The largest structures have an estimated decay

Giza Necropolis or the sculptures at Mount Rushmore may still survive in some form after a million years.[9][a]

Cataclysmic astronomical events

, showing evidence of the impact of celestial objects upon Earth

As the Sun orbits the

solar neighborhood is approximately 30 trillion (3×1013) years, which is much longer than the estimated age of the Universe, at approximately 13.8 billion years. This can be taken as an indication of the low likelihood of such an event occurring during the lifetime of the Earth.[30]

The energy released from the impact of an

Phanerozoic Eon. Such events can be expected to continue.[31]

A

gamma ray burst that will have a significant impact on the planet's biosphere.[35]

The incremental effect of

gravitational perturbations between the planets causes the inner Solar System as a whole to behave chaotically over long time periods. This does not significantly affect the stability of the Solar System over intervals of a few million years or less, but over billions of years, the orbits of the planets become unpredictable. Computer simulations of the Solar System's evolution over the next five billion years suggest that there is a small (less than 1%) chance that a collision could occur between Earth and either Mercury, Venus, or Mars.[36][37] During the same interval, the odds that Earth will be scattered out of the Solar System by a passing star are on the order of 1 in 100,000 (0.001%). In such a scenario, the oceans would freeze solid within several million years, leaving only a few pockets of liquid water about 14 km (9 mi) underground. There is a remote chance that Earth will instead be captured by a passing binary star system, allowing the planet's biosphere to remain intact. The odds of this happening are about 1 in 3 million.[38]

Orbit and rotation

The gravitational perturbations of the other planets in the Solar System combine to modify the

semimajor axis, eccentricity, and inclination remained nearly constant.[42]

Glaciation

An artist's impression of ice age Earth at glacial maximum.

Historically, there have been cyclical

semimajor axis to 99.88%, respectively.[46]

Earth is passing through an ice age known as the

global warming period of finite duration (based on the assumption that fossil fuel use will cease by the year 2200) will probably only impact the glacial period for about 5,000 years. Thus, a brief period of global warming induced by a few centuries' worth of greenhouse gas emission would only have a limited impact in the long term.[10]

Obliquity

tidal bulge exerts a net torque on the Moon, boosting it while slowing the Earth's rotation
(not to scale).

The

mantle and between the atmosphere and surface—can dissipate the Earth's rotational energy. These combined effects are expected to increase the length of the day by more than 1.5 hours over the next 250 million years, and to increase the obliquity by about a half degree. The distance to the Moon will increase by about 1.5 Earth radii during the same period.[47]

Based on computer models, the presence of the Moon appears to stabilize the obliquity of the Earth, which may help the planet to avoid dramatic climate changes.[48] This stability is achieved because the Moon increases the precession rate of the Earth's rotation axis, thereby avoiding resonances between the precession of the rotation and precession of the planet's orbital plane (that is, the precession motion of the ecliptic).[49] However, as the semimajor axis of the Moon's orbit continues to increase, this stabilizing effect will diminish. At some point, perturbation effects will probably cause chaotic variations in the obliquity of the Earth, and the axial tilt may change by angles as high as 90° from the plane of the orbit. This is expected to occur between 1.5 and 4.5 billion years from now.[11]

A high obliquity would probably result in dramatic changes in the climate and may destroy the planet's

insolation at the equator is less than that at the poles. The planet could remain at an obliquity of 60° to 90° for periods as long as 10 million years.[50]

Geodynamics

An irregular green shape against a blue background represents Pangaea.
Pangaea was the last supercontinent to form before the present.

Old Faithful Geyser will likely cease to operate. The Niagara Falls will continue to retreat upstream, reaching Buffalo in about 30,000–50,000 years.[9] Supervolcano events are the most impactful geological hazards, generating over 1,000 km3 of fragmented material and covering thousands of square kilometers with ash deposits. However, they are comparatively rare, occurring on average every 100,000 years.[51]

In 10,000 years, the post-glacial rebound of the Baltic Sea will have reduced the depth by about 90 m (300 ft). The Hudson Bay will decrease in depth by 100 m over the same period.[37] After 100,000 years, the island of Hawaii will have shifted about 9 km (5.6 mi) to the northwest. The planet may be entering another glacial period by this time.[9]

Continental drift

The theory of plate tectonics demonstrates that the continents of the Earth are moving across the surface at the rate of a few centimeters per year. This is expected to continue, causing the plates to relocate and collide. Continental drift is facilitated by two factors: the energy generated within the planet and the presence of a

heat through radiogenic processes is sufficient to maintain mantle convection and plate subduction for at least the next 1.1 billion years.[53]

At present, the continents of North and South America are moving westward from Africa and Europe. Researchers have produced several scenarios about how this will continue in the future.

geodynamic models can be distinguished by the subduction flux, whereby the oceanic crust moves under a continent. In the introversion model, the younger, interior, Atlantic Ocean becomes preferentially subducted and the current migration of North and South America is reversed. In the extroversion model, the older, exterior, Pacific Ocean remains preferentially subducted and North and South America migrate toward eastern Asia.[55][56]

As the understanding of geodynamics improves, these models will be subject to revision. In 2008, for example, a computer simulation was used to predict that a reorganization of the mantle convection will occur over the next 100 million years, creating a new supercontinent composed of Africa, Eurasia, Australia, Antarctica and South America to form around Antarctica.[57]

Regardless of the outcome of the continental migration, the continued subduction process causes water to be transported to the mantle. After a billion years from the present, a geophysical model gives an estimate that 27% of the current ocean mass will have been subducted. If this process were to continue unmodified into the future, the subduction and release would reach an equilibrium after 65% of the current ocean mass has been subducted.[58]

Introversion

A rough approximation of Pangaea Ultima, one of the four models for a future supercontinent

Paleomap Project.[54] In their scenario, 50 million years from now the Mediterranean Sea may vanish, and the collision between Europe and Africa will create a long mountain range extending to the current location of the Persian Gulf. Australia will merge with Indonesia, and Baja California will slide northward along the coast. New subduction zones may appear off the eastern coast of North and South America, and mountain chains will form along those coastlines. The migration of Antarctica to the north will cause all of its ice sheets to melt. This, along with the melting of the Greenland ice sheets, will raise the average ocean level by 90 m (300 ft). The inland flooding of the continents will result in climate changes.[54]

As this scenario continues, by 100 million years from the present, the continental spreading will have reached its maximum extent and the continents will then begin to coalesce. In 250 million years, North America will collide with Africa. South America will wrap around the southern tip of Africa. The result will be the formation of a new supercontinent (sometimes called

Pangaea Ultima), with the Pacific Ocean stretching across half the planet. Antarctica will reverse direction and return to the South Pole, building up a new ice cap.[59]

Extroversion

The first scientist to extrapolate the current motions of the continents was Canadian geologist

Amasia.[60][61] Later, in the 1990s, Roy Livermore calculated a similar scenario. He predicted that Antarctica would start to migrate northward, and East Africa and Madagascar would move across the Indian Ocean to collide with Asia.[62]

In an extroversion model, the closure of the Pacific Ocean would be complete in about 350 million years.[63] This marks the completion of the current supercontinent cycle, wherein the continents split apart and then rejoin each other about every 400–500 million years.[64] Once the supercontinent is built, plate tectonics may enter a period of inactivity as the rate of subduction drops by an order of magnitude. This period of stability could cause an increase in the mantle temperature at the rate of 30–100 °C (54–180 °F) every 100 million years, which is the minimum lifetime of past supercontinents. As a consequence, volcanic activity may increase.[56][63]

Supercontinent

The formation of a supercontinent can dramatically affect the environment. The collision of plates will result in

biological evolution as new niches emerge.[66]

The formation of a supercontinent insulates the mantle. The flow of heat will be concentrated, resulting in volcanism and the flooding of large areas with basalt. Rifts will form and the supercontinent will split up once more.

Cretaceous period,[66] which marked the split-up of the previous Pangaea
supercontinent.

Solidification of the outer core

The iron-rich core region of the Earth is divided into a 2,440 km (1,520 mi) diameter solid

outer core.[68] The rotation of the Earth creates convective eddies in the outer core region that cause it to function as a dynamo.[69] This generates a magnetosphere about the Earth that deflects particles from the solar wind, which prevents significant erosion of the atmosphere from sputtering. As heat from the core is transferred outward toward the mantle, the net trend is for the inner boundary of the liquid outer core region to freeze, thereby releasing thermal energy and causing the solid inner core to grow.[70] This iron crystallization process has been ongoing for about a billion years. In the modern era, the radius of the inner core is expanding at an average rate of roughly 0.5 mm (0.02 in) per year, at the expense of the outer core.[71] Nearly all of the energy needed to power the dynamo is being supplied by this process of inner core formation.[72]

The inner core is expected to consume most or all of the outer core 3–4 billion years from now, resulting in an almost completely solidified core composed of iron and other heavy elements. The surviving liquid envelope will mainly consist of lighter elements that will undergo less mixing.[73] Alternatively, if at some point plate tectonics cease, the interior will cool less efficiently, which would slow down or even stop the inner core's growth. In either case, this can result in the loss of the magnetic dynamo. Without a functioning dynamo, the magnetic field of the Earth will decay in a geologically short time period of roughly 10,000 years.[74] The loss of the magnetosphere will cause an increase in erosion of light elements, particularly hydrogen, from the Earth's outer atmosphere into space, resulting in less favorable conditions for life.[75]

Solar evolution

The energy generation of the Sun is based upon

proton–proton chain reaction process. Because there is no convection in the solar core, the helium concentration builds up in that region without being distributed throughout the star. The temperature at the core of the Sun is too low for nuclear fusion of helium atoms through the triple-alpha process, so these atoms do not contribute to the net energy generation that is needed to maintain hydrostatic equilibrium of the Sun.[76]

At present, nearly half the hydrogen at the core has been consumed, with the remainder of the atoms consisting primarily of helium. As the number of hydrogen atoms per unit mass decreases, so too does their energy output provided through nuclear fusion. This results in a decrease in pressure support, which causes the core to contract until the increased density and temperature bring the core pressure into equilibrium with the layers above. The higher temperature causes the remaining hydrogen to undergo fusion at a more rapid rate, thereby generating the energy needed to maintain the equilibrium.[76]

Evolution of the Sun's luminosity, radius and effective temperature compared to the present Sun. After Ribas (2010).[77]

The result of this process has been a steady increase in the energy output of the Sun. When the Sun first became a

subgiant stage and evolve into a red giant.[1]

By this time, the collision of the Milky Way and Andromeda galaxies should be underway. Although this could result in the Solar System being ejected from the newly combined galaxy, it is considered unlikely to have any adverse effect on the Sun or its planets.[78][79]

Climate impact

In the far future, most of Earth's land will likely be a barren desert, like this location in White Desert National Park, Egypt.

The rate of weathering of

Caltech have suggested that once C3 plants die off, the lack of biological production of oxygen and nitrogen will cause a reduction in Earth's atmospheric pressure, which will counteract the rise in temperature, and allow enough carbon dioxide to persist for photosynthesis to continue. This would allow life to survive up to 2 billion years from now, at which point water would be the limiting factor.[85]
Currently, C4 plants represent about 5% of Earth's plant biomass and 1% of its known plant species.[86] For example, about 50% of all grass species (Poaceae) use the C4 photosynthetic pathway,[87] as do many species in the herbaceous family Amaranthaceae.[88]

When the levels of carbon dioxide fall to the limit where photosynthesis is barely sustainable, the proportion of carbon dioxide in the atmosphere is expected to oscillate up and down. This will allow land vegetation to flourish each time the level of carbon dioxide rises due to

further).[81]

The loss of higher plant life will result in the eventual loss of oxygen as well as ozone due to the respiration of animals, chemical reactions in the atmosphere, and volcanic eruptions. Modelling of the decline in oxygenation predicts that it may drop to 1% of the current atmospheric levels by one billion years from now.[89] This decline will result in less attenuation of DNA-damaging UV,[81] as well as the death of animals; the first animals to disappear would be large mammals, followed by small mammals, birds, amphibians and large fish, reptiles and small fish, and finally invertebrates.[12]

Before this happens, it is expected that life would concentrate at refugia of lower temperature such as high elevations where less land surface area is available, thus restricting population sizes. Smaller animals would survive better than larger ones because of lesser oxygen requirements, while birds would fare better than mammals thanks to their ability to travel large distances looking for cooler temperatures. Based on oxygen’s half-life in the atmosphere, animal life would last at most 100 million years after the loss of higher plants.[12] Some cyanobacteria and phytoplankton could outlive plants due to their tolerance for carbon dioxide levels as low as 1 ppm, and may survive for around the same time as animals before carbon dioxide becomes too depleted to support any form of photosynthesis.[12]

In their work

loss of biodiversity.[13]

As temperatures continue to rise, the last of animal life will be driven toward the poles, and possibly underground. They would become primarily active during the

hydrothermal vents such as worms of the genus Riftia.[81] As a result of these processes, multicellular life forms may be extinct in about 800 million years, and eukaryotes in 1.3 billion years, leaving only the prokaryotes.[90]

Loss of oceans

Light brown clouds wrap around a planet, as seen from space.
The atmosphere of Venus is in a "super-greenhouse" state. Earth in a few billion years could likely resemble present Venus.

One billion years from now, about 27% of the modern ocean will have been subducted into the mantle. If this process were allowed to continue uninterrupted, it would reach an equilibrium state where 65% of the current surface reservoir would remain at the surface.[58] Once the solar luminosity is 10% higher than its current value, the average global surface temperature will rise to 320 K (47 °C; 116 °F). The atmosphere will become a "moist greenhouse" leading to a runaway evaporation of the oceans.[91][92] At this point, models of the Earth's future environment demonstrate that the stratosphere would contain increasing levels of water. These water molecules will be broken down through photodissociation by solar UV, allowing hydrogen to escape the atmosphere. The net result would be a loss of the world's seawater by about 1.1 billion years from the present.[93][94]

There will be one of two variations of this future warming feedback: the "moist greenhouse" where water vapor dominates the troposphere while water vapor starts to accumulate in the stratosphere (if the oceans evaporate very quickly), and the "runaway greenhouse" where water vapor becomes a dominant component of the atmosphere (if the oceans evaporate too slowly). In this ocean-free era, there will continue to be surface reservoirs as water is steadily released from the deep crust and mantle,[58] where it is estimated that there is an amount of water equivalent to several times that currently present in the Earth's oceans.[95] Some water may be retained at the poles and there may be occasional rainstorms, but for the most part, the planet would be a desert with large dunefields covering its equator, and a few salt flats on what was once the ocean floor, similar to the ones in the Atacama Desert in Chile.[14]

With no water to serve as a lubricant, plate tectonics would likely stop and the most visible signs of geological activity would be shield volcanoes located above mantle hotspots.[92][81] In these arid conditions the planet may retain some microbial and possibly even multicellular life.[92] Most of these microbes will be halophiles and life could find refuge in the atmosphere as has been proposed to have happened on Venus.[81] However, the increasingly extreme conditions will likely lead to the extinction of the prokaryotes between 1.6 billion years[90] and 2.8 billion years from now, with the last of them living in residual ponds of water at high latitudes and heights or in caverns with trapped ice. However, underground life could last longer.[12]

What proceeds after this depends on the level of tectonic activity. A steady release of carbon dioxide by volcanic eruption could cause the atmosphere to enter a "super-greenhouse" state like that of the planet Venus. But, as stated above, without surface water, plate tectonics would probably come to a halt and most of the carbonates would remain securely buried[14] until the Sun becomes a red giant and its increased luminosity heats the rock to the point of releasing the carbon dioxide.[95] However, as pointed out by Peter Ward and Donald Brownlee in their book The Life and Death of Planet Earth, according to NASA Ames scientist Kevin Zahnle, it is highly possible that plate tectonics may stop long before the loss of the oceans, due to the gradual cooling of the Earth's core, which could happen in just 500 million years. This could potentially turn the Earth back into a water world, and even perhaps drowning all remaining land life.[96]

The loss of the oceans could be delayed until 2 billion years in the future if the

atm) of nitrogen has been removed from the atmosphere over the past four billion years, which is enough to effectively double the current atmospheric pressure if it were to be released. This rate of removal would be sufficient to counter the effects of increasing solar luminosity for the next two billion years.[85]

By 2.8 billion years from now, the surface temperature of the Earth will have reached 422 K (149 °C; 300 °F), even at the poles. At this point, any remaining life will be extinguished due to the extreme conditions. What happens beyond this depends on how much water is left on the surface. If all of the water on Earth has evaporated by this point (via the "moist greenhouse" at ~1 Gyr from now), the planet will stay in the same conditions with a steady increase in the surface temperature until the Sun becomes a red giant.[92] If not and there are still pockets of water left, and they evaporate too slowly, then in about 3–4 billion years, once the amount of water vapor in the lower atmosphere rises to 40%, and the luminosity from the Sun reaches 35–40% more than its present-day value,[93] a "runaway greenhouse" effect will ensue, causing the atmosphere to warm and raising the surface temperature to around 1,600 K (1,330 °C; 2,420 °F). This is sufficient to melt the surface of the planet.[94][92] However, most of the atmosphere is expected to be retained until the Sun has entered the red giant stage.[97]

With the extinction of life, 2.8 billion years from now, it is expected that Earth's biosignatures will disappear, to be replaced by signatures caused by non-biological processes.[81]

Red giant stage

A large red disk represents the Sun as a red giant. An inset box shows the current Sun as a yellow dot.
The size of the current Sun (now in the main sequence) compared to its estimated size during its red giant phase

Once the Sun changes from burning hydrogen within its core to burning hydrogen in a shell around its core, the core will start to contract, and the outer envelope will expand. The total luminosity will steadily increase over the following billion years until it reaches 2,730 times its current

lava ocean with floating continents of metals and metal oxides and icebergs of refractory materials, with its surface temperature reaching more than 2,400 K (2,130 °C; 3,860 °F).[98] The Sun will experience more rapid mass loss, with about 33% of its total mass shed with the solar wind. The loss of mass will mean that the orbits of the planets will expand. The orbital distance of Earth will increase to at most 150% of its current value (that is, 1.5 AU (220 million km; 140 million mi)).[17]

The most rapid part of the Sun's expansion into a red giant will occur during the final stages, when the Sun will be about 12 billion years old. It is likely to expand to swallow both Mercury and Venus, reaching a maximum radius of 1.2 AU (180 million km; 110 million mi). Earth will interact tidally with the Sun's outer atmosphere, which would decrease Earth's orbital radius. Drag from the chromosphere of the Sun would reduce Earth's orbit. These effects will counterbalance the impact of mass loss by the Sun, and the Sun will likely engulf Earth in about 7.59 billion years from now.[17]

The drag from the solar atmosphere may cause the orbit of the Moon to decay. Once the orbit of the Moon closes to a distance of 18,470 km (11,480 mi), it will cross Earth's Roche limit, meaning that tidal interaction with Earth would break apart the Moon, turning it into a ring system. Most of the orbiting rings will begin to decay, and the debris will impact Earth. Hence, even if the Sun does not swallow the Earth, the planet may be left moonless.[99] Furthermore, the ablation and vaporization caused by its fall on a decaying trajectory towards the Sun may remove Earth's mantle, leaving just its core, which will finally be destroyed after at most 200 years.[100][101] Earth's sole legacy will be a very slight increase (0.01%) of the solar metallicity following this event.[102]: IIC 

Beyond and ultimate fate

Helix nebula
, a planetary nebula similar to what the Sun will produce in 8 billion years

After fusing helium in its core to carbon, the Sun will begin to collapse again, evolving into a compact white dwarf star after ejecting its outer atmosphere as a planetary nebula. The predicted final mass is 54% of the present value, most likely consisting primarily of carbon and oxygen.[1]

Currently, the Moon is moving away from Earth at a rate of 4 cm (1.6 inches) per year. In 50 billion years, if the Earth and Moon are not engulfed by the Sun, they will become

Earth–Moon system being sapped by the remnant Sun, causing the Moon to slowly move inwards toward the Earth.[107]

Beyond this point, the ultimate fate of the Earth (if it survives) depends on what happens. On a time scale of 1015 (1 quadrillion) years the remaining planets in the Solar System will be ejected from the system by close encounters with other stellar remnants, and Earth will continue to orbit through the galaxy for around 1019 years before it is ejected or falls into a

gravitational radiation until it collides with the Sun in 1020 (100 quintillion) years.[108] If proton decay can occur and Earth is ejected to intergalactic space, then it will last around 1038 (100 undecillion) years before evaporating into radiation.[109]

See also

References

  1. ^ .
  2. .
  3. ^ .
  4. ^ .
  5. ^ .
  6. ^ a b Myers 2000, pp. 63–70.
  7. ^ a b Reaka-Kudla, Wilson & Wilson 1997, pp. 132–33.
  8. ^
    Journal of Evolution and Technology, 9 (1), archived
    from the original on April 27, 2011, retrieved August 9, 2011.
  9. ^ from the original on October 30, 2015, retrieved June 19, 2013.
  10. ^ .
  11. ^ .
  12. ^ .
  13. ^ a b c d Ward & Brownlee 2003, pp. 117–28.
  14. ^ .
  15. ^ Ward & Brownlee 2003, p. 142.
  16. ^ Fishbaugh et al. 2007, p. 114.
  17. ^
    S2CID 10073988
    .
  18. .
  19. .
  20. ^ Cowie 2007, p. 162.
  21. (PDF) from the original on April 29, 2019, retrieved December 13, 2019.
  22. ^ Illegal Wildlife Trade, U.S. Fish and Wildlife Services, archived from the original on April 8, 2021, retrieved July 16, 2021.
  23. ^ NASA Global Climate Change, "Carbon Dioxide Concentration | NASA Global Climate Change", Climate Change: Vital Signs of the Planet, archived from the original on June 23, 2021, retrieved December 19, 2020.
  24. PMID 11344296
    .
  25. ^ "Stephen Hawking: alien life is out there, scientist warns", The Telegraph, April 25, 2010.
  26. .
  27. .
  28. .
  29. .
  30. ^ Tayler 1993, p. 92.
  31. S2CID 189901526
    .
  32. .
  33. .
  34. ^ Hanslmeier 2009, pp. 174–76.
  35. S2CID 119803426
    .
  36. .
  37. ^ a b Laskar, Jacques (June 2009), Mercury, Mars, Venus and the Earth: when worlds collide!, L'Observatoire de Paris, archived from the original on July 26, 2011, retrieved August 11, 2011.
  38. ^ Adams 2008, pp. 33–44.
  39. PMID 10988063
    .
  40. ^ a b Hanslmeier 2009, p. 116.
  41. ^ a b Roberts 1998, p. 60.
  42. S2CID 18294039
    , 9.
  43. ^ Lunine & Lunine 1999, p. 244.
  44. .
  45. .
  46. ^ The eccentricity e is related to the semimajor axis a and the semiminor axis b as follows:
    Thus for e equal to 0.01, b/a = 0.9995, while for e equal to 0.05, b/a = 0.99875. See:
    Weisstein, Eric W. (December 12, 2002), CRC concise encyclopedia of mathematics, .
  47. (PDF) from the original on July 31, 2020, retrieved September 3, 2019.
  48. .
  49. .
  50. (PDF) from the original on November 8, 2020, retrieved September 8, 2020.
  51. , retrieved April 21, 2024
  52. .
  53. (PDF) from the original on October 25, 2012, retrieved August 28, 2009.
  54. ^ a b c Ward 2006, pp. 231–32.
  55. .
  56. ^ .
  57. (PDF) from the original on July 31, 2020, retrieved December 13, 2019.
  58. ^ .
  59. ^ Ward & Brownlee 2003, pp. 92–96.
  60. ^ Nield 2007, pp. 20–21.
  61. ^ Hoffman 1992, pp. 323–27.
  62. ^ Williams, Caroline; Nield, Ted (October 20, 2007), "Pangaea, the comeback", New Scientist, archived from the original on April 13, 2008, retrieved August 28, 2009.
  63. ^ .
  64. (PDF) from the original on September 23, 2015, retrieved August 28, 2009.
  65. ^ Calkin & Young 1996, pp. 9–75.
  66. ^ a b Thompson & Perry 1997, pp. 127–128.
  67. ^ Palmer 2003, p. 164.
  68. (PDF) from the original on July 31, 2020, retrieved May 16, 2018.
  69. ^ Gonzalez & Richards 2004, p. 48.
  70. S2CID 4412560
    .
  71. .
  72. .
  73. ^ Meadows 2007, p. 34.
  74. ^ Stevenson 2002, p. 605.
  75. . In particular, see page 24.
  76. ^ .
  77. .
  78. ^ Cain, Fraser (2007), "When Our Galaxy Smashes Into Andromeda, What Happens to the Sun?", Universe Today, archived from the original on May 17, 2007, retrieved May 16, 2007.
  79. S2CID 14964036
    .
  80. .
  81. ^ .
  82. .
  83. .
  84. .
  85. ^ .
  86. .
  87. ^ van der Maarel 2005, p. 363.
  88. S2CID 83564261, archived from the original
    (PDF) on August 18, 2011.
  89. .
  90. ^ (PDF) from the original on July 31, 2020, retrieved December 13, 2019.
  91. .
  92. ^ a b c d e Brownlee 2010, p. 95.
  93. ^ from the original on June 4, 2022, retrieved April 29, 2020.
  94. ^ .
  95. ^ a b Brownlee 2010, p. 94.
  96. ^ Ward & Brownlee 2003, p. [page needed].
  97. ^ Minard, Anne (May 29, 2009), "Sun Stealing Earth's Atmosphere", National Geographic News, archived from the original on November 1, 2017, retrieved August 30, 2009.
  98. .
  99. ^ Powell, David (January 22, 2007), "Earth's Moon Destined to Disintegrate", Space.com, Tech Media Network, archived from the original on September 6, 2008, retrieved June 1, 2010.
  100. .
  101. , p. L51.
  102. .
  103. .
  104. .
  105. ^ "A Rocky Relationship: Is the Moon Leaving the Earth?", Futurism, May 10, 2013, archived from the original on January 9, 2016, retrieved December 14, 2018.
  106. from the original on January 17, 2023, retrieved May 15, 2016.
  107. ^ Dorminey, Bruce (January 31, 2017), "Earth and Moon May Be on Long-Term Collision Course", Forbes, archived from the original on February 1, 2017, retrieved February 11, 2017.
  108. from the original on July 5, 2008, retrieved July 5, 2008.
  109. .

Bibliography

Notes

  1. ^ See also: Life After People, about the decay of structures (if humans disappeared).

Further reading