Gödel Prize

Source: Wikipedia, the free encyclopedia.

The Gödel Prize is an annual prize for outstanding papers in the area of

linear time.[1]

The Gödel Prize has been awarded since 1993. The prize is awarded alternately at ICALP (even years) and STOC (odd years). STOC is the ACM

North American conferences in theoretical computer science, whereas ICALP is the International Colloquium on Automata, Languages and Programming, one of the main European conferences in the field. To be eligible for the prize, a paper must be published in a refereed journal within the last 14 (formerly 7) years. The prize includes a reward of US$5000.[2]

The winner of the Prize is selected by a committee of six members. The EATCS President and the SIGACT Chair each appoint three members to the committee, to serve staggered three-year terms. The committee is chaired alternately by representatives of EATCS and SIGACT.

In contrast with the Gödel Prize, which recognizes outstanding papers, the Knuth Prize is awarded to individuals for their overall impact in the field.

Recipients

Year Name(s) Notes Publication year
1993 László Babai, Shafi Goldwasser, Silvio Micali, Shlomo Moran, and Charles Rackoff for the development of interactive proof systems 1988,[paper 1] 1989[paper 2]
1994 Johan Håstad for an exponential
Boolean circuits (for the parity function
).
1989[paper 3]
1995 Neil Immerman and Róbert Szelepcsényi for the Immerman–Szelepcsényi theorem regarding nondeterministic space complexity 1988,[paper 4] 1988[paper 5]
1996 Mark Jerrum and Alistair Sinclair for work on
Markov chains and the approximation of the permanent of a matrix
1989,[paper 6] 1989[paper 7]
1997 Joseph Halpern and Yoram Moses for defining a formal notion of "knowledge" in distributed environments 1990[paper 8]
1998 Seinosuke Toda for Toda's theorem, which showed a connection between counting solutions (PP) and alternation of quantifiers (PH) 1991[paper 9]
1999 Peter Shor for
quantum computer
1997[paper 10]
2000
Moshe Y. Vardi and Pierre Wolper
for work on
finite automata
1994[paper 11]
2001 Sanjeev Arora, Uriel Feige, Shafi Goldwasser, Carsten Lund, László Lovász, Rajeev Motwani, Shmuel Safra, Madhu Sudan, and Mario Szegedy for the PCP theorem and its applications to hardness of approximation 1996,[paper 12] 1998,[paper 13] 1998[paper 14]
2002 Géraud Sénizergues for proving that equivalence of deterministic pushdown automata is decidable 2001[paper 15]
2003 Yoav Freund and Robert Schapire for the AdaBoost algorithm in machine learning 1997[paper 16]
2004 Maurice Herlihy, Michael Saks, Nir Shavit and Fotios Zaharoglou for applications of topology to the theory of distributed computing 1999,[paper 17] 2000[paper 18]
2005 Noga Alon, Yossi Matias and Mario Szegedy for their foundational contribution to streaming algorithms 1999[paper 19]
2006 Manindra Agrawal, Neeraj Kayal, Nitin Saxena for the AKS primality test 2004[paper 20]
2007 Alexander Razborov, Steven Rudich for natural proofs 1997[paper 21]
2008
Shang-Hua Teng
for smoothed analysis of algorithms 2004[paper 22]
2009 Omer Reingold, Salil Vadhan, Avi Wigderson for
log space
2002,[paper 23] 2008[paper 24]
2010 Sanjeev Arora, Joseph S. B. Mitchell for their concurrent discovery of a
Travelling Salesman Problem
(ETSP)
1998,[paper 25]

1999[paper 26]

2011 Johan Håstad for proving optimal inapproximability results for various combinatorial problems 2001[paper 27]
2012 Elias Koutsoupias, Christos Papadimitriou, Noam Nisan, Amir Ronen, Tim Roughgarden and Éva Tardos for laying the foundations of algorithmic game theory[3] 2009,[paper 28] 2002,[paper 29] 2001[paper 30]
2013 Dan Boneh, Matthew K. Franklin, and Antoine Joux for multi-party Diffie–Hellman key exchange and the Boneh–Franklin scheme in cryptography[4] 2003,[paper 31]

2004[paper 32]

2014 Ronald Fagin, Amnon Lotem [fr], and Moni Naor for Optimal Aggregation Algorithms for middleware[5] 2003,[paper 33]
2015
Shang-Hua Teng
for their series of papers on nearly-linear-time Laplacian solvers[6]

2011[paper 34] 2013[paper 35] 2014[paper 36]

2016 Stephen Brookes and Peter W. O'Hearn for their invention of Concurrent Separation Logic 2007,[paper 37] 2007[paper 38]
2017[2] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith for the invention of differential privacy 2006[paper 39]
2018[7]
Oded Regev
for introducing the learning with errors problem 2009[paper 40]
2019[8] Irit Dinur for her new proof of the PCP theorem by gap amplification 2007[paper 41]
2020[9] Robin Moser and Gábor Tardos for their constructive proof of the Lovász local lemma 2010[paper 42]
2021[10] Andrei Bulatov, Jin-Yi Cai, Xi Chen, Martin Dyer, and David Richerby for their work on the classification of the counting complexity of constraint satisfaction problems 2013[paper 43]

2013[paper 44] 2017[paper 45]

2022[11] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan for their transformative contributions to cryptography by constructing efficient fully homomorphic encryption (FHE) schemes 2014,[paper 46] 2014[paper 47]
2023[12] Samuel Fiorini, Serge Massar, and Sebastian Pokutta, Hans Raj Tiwary, Ronald de Wolf, and Thomas Rothvoss for showing that any extended formulation for the TSP polytope has exponential size 2015,[paper 48] 2017[paper 49]

Winning papers

  1. ISSN 0022-0000
  2. (PDF) on 2012-02-22
  3. ISSN 0890-5401, archived from the original
    (PDF) on 2011-08-25
  4. S2CID 751563, archived from the original
    (PDF) on 2011-06-10
  5. S2CID 8561542, archived from the original
    (PDF) on 2011-06-10
  6. (STOC) in 1996.
  7. ]
  8. .
  9. .
  10. .
  11. .
  12. .
  13. .
  14. .
  15. .
  16. .
  17. .
  18. .
  19. .
  20. .
  21. .
  22. .
  23. .
  24. .
  25. .
  26. .
  27. .
  28. ^ Fiorini, Samuel; Massar, Serge; Pokutta, Sebastian; Tiwary, Hans Raj; de Wolf, Ronald (2015). "Exponential Lower Bounds for Polytopes in Combinatorial Optimization". Journal of the ACM. 62 (2): 17:1–17:23.
    S2CID 7372000
    .
  29. ^ Rothvoss, Thomas (2017). "The Matching Polytope has Exponential Extension Complexity". Journal of the ACM. 64 (6): 41:1–41:19.
    S2CID 47045361
    .

See also

Notes

References