GPS/INS

Source: Wikipedia, the free encyclopedia.

GPS/INS is the use of

GNSS
/INS system.

Overview

GPS/INS method

The GPS gives an absolute drift-free position value that can be used to reset the INS solution or can be blended with it by use of a mathematical algorithm, such as a Kalman filter. The angular orientation of the unit can be inferred from the series of position updates from the GPS. The change in the error in position relative to the GPS can be used to estimate the unknown angle error.

The benefits of using GPS with an INS are that the INS may be calibrated by the GPS signals and that the INS can provide position and angle updates at a quicker rate than GPS. For high dynamic vehicles, such as missiles and aircraft, INS fills in the gaps between GPS positions. Additionally, GPS may lose its signal and the INS can continue to compute the position and angle during the period of lost GPS signal. The two systems are complementary and are often employed together.[1]

Applications

GPS/INS is commonly used on aircraft for navigation purposes. Using GPS/INS allows for smoother position and velocity estimates that can be provided at a sampling rate faster than the GPS receiver. This also allows for accurate estimation of the aircraft attitude (roll, pitch, and yaw) [

matrix square root of the state error covariance matrix, which is used to determine the spread of the sigma points for the unscented transform. There are various ways to calculate the matrix square root, which have been presented and compared within GPS/INS application.[12] From this work it is recommended to use the Cholesky decomposition
method.

In addition to aircraft applications, GPS/INS has also been studied for automobile applications such as autonomous navigation,[13][14] vehicle dynamics control,[15] or sideslip, roll, and tire cornering stiffness estimation.[16][17]

See also

  • GNSS Augmentation

References

  • US Patent No. 6900760
  1. ^ Grewal, M. S.; L. R. Weill; A. P. Andrew (2007). Global Positioning, Inertial Navigation & Integration. New York: John Wiley & Sons.
  2. S2CID 8141345
    .
  3. .
  4. .
  5. ^ Fiorenzani, T.; et al. (2008). "Comparative Study of Unscented Kalman Filter and Extended Kalman Filter for Position/Attitude Estimation in Unmanned Aerial Vehicles". Iasr-CNR. 08–08.
  6. ^ Wendell, J.; J. Metzger; R. Moenikes; A. Maier; G. F. Trommer (2006). "A Performance Comparison of Tightly Coupled GPS/INS Navigation Systems Based on Extended and Sigma-Point Kalman Filters". Journal of the Institute of Navigation. 53 (1).
  7. ^ El-Sheimy, Naser; Eun-Hwan Shin; Xiaoji Niu (March 2006). "Kalman Filter Face-Off: Extended vs. Unscented Kalman Filters for Integrated GPS and MEMS Inertial". Inside GNSS: 48–54.
  8. ^ St. Pierre, M.; D. Ing (June 2004). "Comparison between the unscented Kalman filter and the extended Kalman filter for the position estimation module of an integrated navigation information system". 2004 IEEE Intelligent Vehicles Symposium, Parma, Italy.
  9. .
  10. .
  11. .
  12. .
  13. ^ Petovello, M. G.; M. E. Cannon; G. Lachapelle; J. Wang; C. K. H. Wilson; O. S. Salychev; V. V. Voronov (September 2001). "Development and Testing of a Real-Time GPS/INS Reference System for Autonomous Automobile Navigation". Proc. Of ION GPS-01, Salt Lake City, UT.
  14. ^ El-Sheimy, Naser; Eun-Hwan Shin; Xiaoji Niu (March 2006). "Kalman Filter Face-Off: Extended vs. Unscented Kalman Filters for Integrated GPS and MEMS Inertial". Inside GNSS: 48–54.
  15. .
  16. .
  17. ^ Ryu, Jihan; Eric J. Rosseter; J. Christian Gerdes (2002). "Vehicle Sideslip and Roll Parameter Estimation Using GPS". AVED 2002 6th Int. Symposium on Advanced Vehicle Control, Hiroshima, Japan.