GTPase

Source: Wikipedia, the free encyclopedia.

GTPases are a large family of

protein domain common to many GTPases.[1]

Functions

GTPases function as molecular switches or timers in many fundamental cellular processes.[2]

Examples of these roles include:

GTPases are active when bound to GTP and inactive when bound to GDP.[2][3] In the generalized receptor-transducer-effector signaling model of Martin Rodbell, signaling GTPases act as transducers to regulate the activity of effector proteins.[3] This inactive-active switch is due to conformational changes in the protein distinguishing these two forms, particularly of the "switch" regions that in the active state are able to make protein-protein contacts with partner proteins that alter the function of these effectors.[1]

Mechanism

Hydrolysis of GTP bound to an (active) G domain-GTPase leads to deactivation of the signaling/timer function of the enzyme.

inorganic phosphate, occurs by the SN2 mechanism (see nucleophilic substitution) via a pentacoordinate transition state and is dependent on the presence of a magnesium ion Mg2+.[2][3]

GTPase activity serves as the shutoff mechanism for the signaling roles of GTPases by returning the active, GTP-bound protein to the inactive, GDP-bound state.

ADP-ribosylation factor or ARF family of small GTP-binding proteins that are involved in vesicle-mediated transport within cells).[5]

To become activated, GTPases must bind to GTP. Since mechanisms to convert bound GDP directly into GTP are unknown, the inactive GTPases are induced to release bound GDP by the action of distinct regulatory proteins called

G protein-coupled receptors
are themselves GEFs, while for receptor-activated small GTPases their GEFs are distinct from cell surface receptors).

Some GTPases also bind to accessory proteins called guanine nucleotide dissociation inhibitors or GDIs that stabilize the inactive, GDP-bound state.[6]

The amount of active GTPase can be changed in several ways:

  1. Acceleration of GDP dissociation by GEFs speeds up the accumulation of active GTPase.
  2. Inhibition of GDP dissociation by guanine nucleotide dissociation inhibitors (GDIs) slows down accumulation of active GTPase.
  3. Acceleration of GTP hydrolysis by GAPs reduces the amount of active GTPase.
  4. Artificial GTP analogues like GTP-γ-S, β,γ-methylene-GTP, and β,γ-imino-GTP that cannot be hydrolyzed can lock the GTPase in its active state.
  5. Mutations (such as those that reduce the intrinsic GTP hydrolysis rate) can lock the GTPase in the active state, and such mutations in the small GTPase Ras are particularly common in some forms of cancer.[7]

G domain GTPases

In most GTPases, the specificity for the base guanine versus other nucleotides is imparted by the base-recognition motif, which has the consensus sequence [N/T]KXD. The following classification is based on shared features; some examples have mutations in the base-recognition motif that shift their substrate specificity, most commonly to ATP.[8]

TRAFAC class

The TRAFAC class of G domain proteins is named after the prototypical member, the translation factor G proteins. They play roles in translation, signal transduction, and cell motility.[8]

Translation factor superfamily

Multiple classical

HBS1L (eukaryotic ribosome rescue
protein similar to release factors).

The superfamily also includes the Bms1 family from yeast.[8]

Ras-like superfamily

Heterotrimeric G proteins

lipid anchors to increase their association with the inner leaflet of the plasma membrane.[14]

Heterotrimeric G proteins act as the transducers of

second messengers.[2][3][15] In unstimulated cells, heterotrimeric G proteins are assembled as the GDP bound, inactive trimer (Gα-GDP-Gβγ complex).[2][3] Upon receptor activation, the activated receptor intracellular domain acts as GEF to release GDP from the G protein complex and to promote binding of GTP in its place.[2][3] The GTP-bound complex undergoes an activating conformation shift that dissociates it from the receptor and also breaks the complex into its component G protein alpha and beta-gamma subunit components.[2][3] While these activated G protein subunits are now free to activate their effectors, the active receptor is likewise free to activate additional G proteins – this allows catalytic activation and amplification where one receptor may activate many G proteins.[2][3]

G protein signaling is terminated by hydrolysis of bound GTP to bound GDP.[2][3] This can occur through the intrinsic GTPase activity of the α subunit, or be accelerated by separate regulatory proteins that act as GTPase-activating proteins (GAPs), such as members of the Regulator of G protein signaling (RGS) family).[4] The speed of the hydrolysis reaction works as an internal clock limiting the length of the signal. Once Gα is returned to being GDP bound, the two parts of the heterotrimer re-associate to the original, inactive state.[2][3]

The heterotrimeric G proteins can be classified by sequence homology of the α unit and by their functional targets into four families: Gs family, Gi family, Gq family and G12 family.[12] Each of these Gα protein families contains multiple members, such that the mammals have 16 distinct α-subunit genes.[12] The Gβ and Gγ are likewise composed of many members, increasing heterotrimer structural and functional diversity.[12] Among the target molecules of the specific G proteins are the second messenger-generating enzymes adenylyl cyclase and phospholipase C, as well as various ion channels.[16]

Small GTPases

Ran.[17] While many small GTPases are activated by their GEFs in response to intracellular signals emanating from cell surface receptors (particularly growth factor receptors
), regulatory GEFs for many other small GTPases are activated in response to intrinsic cell signals, not cell surface (external) signals.

Myosin-kinesin superfamily

This class is defined by loss of two beta-strands and additional N-terminal strands. Both namesakes of this superfamily, myosin and kinesin, have shifted to use ATP.[8]

Large GTPases

See dynamin as a prototype for large monomeric GTPases.

SIMIBI class

Much of the SIMIBI class of GTPases is activated by dimerization.[8] Named after the signal recognition particle (SRP), MinD, and BioD, the class is involved in protein localization, chromosome partitioning, and membrane transport. Several members of this class, including MinD and Get3, has shifted in substrate specificity to become ATPases.[19]

Translocation factors

For a discussion of

Translocation factors and the role of GTP, see signal recognition particle
(SRP).

Other GTPases

While tubulin and related structural proteins also bind and hydrolyze GTP as part of their function to form intracellular tubules, these proteins utilize a distinct tubulin domain that is unrelated to the G domain used by signaling GTPases.[20]

There are also GTP-hydrolyzing proteins that use a

AAA+ superclass.[8]

See also

References

External links

This page is based on the copyrighted Wikipedia article: GTPase. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy