Gastropoda

Source: Wikipedia, the free encyclopedia.

Gastropoda
Temporal range: Cambrian–Present[1]
Various gastropods from different types: black slug (a slug), Haliotis asinina (an abalone), Cornu aspersum (a land snail), Notarchus indicus (a seahare), Patella vulgata (a limpet), and Polycera aurantiomarginata (a nudibranch).
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Mollusca
Class: Gastropoda
Cuvier, 1795[2]
Subclasses
Diversity[3][4]
65,000 to 80,000 species
Synonyms[5]
  • Angiogastropoda - represented as Gastropoda
  • Apogastropoda - alternate representation of Gastropoda
  • Psilogastropoda - represented as Gastropoda

Gastropods (/ˈɡæstrəpɒdz/), commonly known as slugs and snails, belong to a large taxonomic class of invertebrates within the phylum Mollusca called Gastropoda (/ɡæsˈtrɒpədə/).[5]

This class comprises snails and slugs from saltwater, freshwater, and from the land. There are many thousands of species of sea snails and slugs, as well as freshwater snails, freshwater limpets, land snails and slugs.

The class Gastropoda is a diverse and highly successful class of mollusks within the phylum Mollusca. It contains a vast total of named species, second only to the

extinct and appear only in the fossil record, while 476 are currently extant with or without a fossil record.[6]

Gastropoda (previously known as univalves and sometimes spelled "Gasteropoda") are a major part of the phylum Mollusca, and are the most highly diversified class in the phylum, with 65,000 to 80,000[3][4] living snail and slug species. The anatomy, behavior, feeding, and reproductive adaptations of gastropods vary significantly from one clade or group to another, so stating many generalities for all gastropods is difficult.

The class Gastropoda has an extraordinary diversification of

parasitic
ones.

Although the name "snail" can be, and often is, applied to all the members of this class, commonly this word means only those species with an external shell big enough that the soft parts can withdraw completely into it. Slugs are gastropods that have no shell or a very small, internal shell; semislugs are gastropods that have a shell that they can partially retreat into but not entirely.

The marine shelled species of gastropods include species such as

larval
stage, and is a simple conical structure after that.

Etymology

In the scientific literature, gastropods were described as "gasteropodes" by Georges Cuvier in 1795.[2] The word gastropod comes from Greek γαστήρ (gastḗr 'stomach') and πούς (poús 'foot'), a reference to the fact that the animal's "foot" is positioned below its guts.[7]

The earlier name "univalve" means one

bivalves
, such as clams, which have two valves or shells.

Diversity

At all taxonomic levels, gastropods are second only to insects in terms of their diversity.[8]

Gastropods have the greatest numbers of named mollusk species. However, estimates of the total number of gastropod species vary widely, depending on cited sources. The number of gastropod species can be ascertained from estimates of the number of described species of Mollusca with accepted names: about 85,000 (minimum 50,000, maximum 120,000).[9] But an estimate of the total number of Mollusca, including undescribed species, is about 240,000 species.[10] The estimate of 85,000 mollusks includes 24,000 described species of terrestrial gastropods.[9]

Different estimates for aquatic gastropods (based on different sources) give about 30,000 species of marine gastropods, and about 5,000 species of freshwater and brackish gastropods. Many deep-sea species remain to be discovered, as only 0.0001% of the deep-sea floor has been studied biologically.[11][12] The total number of living species of freshwater snails is about 4,000.[13]

Recently

extinct species of gastropods (extinct since 1500) number 444, 18 species are now extinct in the wild (but still exist in captivity), and 69 species are "possibly extinct".[14]

The number of prehistoric (fossil) species of gastropods is at least 15,000 species.[15]

In marine habitats, the

continental slope and the continental rise are home to the highest diversity, while the continental shelf and abyssal depths have a low diversity of marine gastropods.[16]

Habitat

Cepaea nemoralis: a European pulmonate land snail, which has been introduced to many other countries

Gastropods are found in a wide range of aquatic and terrestrial habitats, from deep ocean trenches to deserts.[citation needed]

Some of the more familiar and better-known gastropods are terrestrial gastropods (the land snails and slugs). Some live in fresh water, but most named species of gastropods live in a marine environment. [citation needed]

Gastropods have a worldwide distribution, from the near Arctic and Antarctic zones to the tropics. They have become adapted to almost every kind of existence on earth, having colonized nearly every available medium.[citation needed]

In habitats where not enough calcium carbonate is available to build a really solid shell, such as on some acidic soils on land, various species of slugs occur, and also some snails with thin, translucent shells, mostly or entirely composed of the protein conchiolin.[citation needed]

Snails such as

hydrothermal vents, in oceanic trenches 10,000 meters (6 miles) below the surface,[17] the pounding surf of rocky shores, caves
, and many other diverse areas.

Gastropods can be accidentally transferred from one habitat to another by other animals, e.g. by birds.[18]

Anatomy

The anatomy of a common air-breathing land snail: much of this anatomy does not apply to gastropods in other clades or groups.

Snails are distinguished by an anatomical process known as torsion, where the visceral mass of the animal rotates 180° to one side during development, such that the anus is situated more or less above the head. This process is unrelated to the coiling of the shell, which is a separate phenomenon. Torsion is present in all gastropods, but the opisthobranch gastropods are secondarily untorted to various degrees.[19][20]

Torsion occurs in two stages. The first, mechanistic stage is muscular, and the second is

genital orifice, which lies on the same side of the body as the anus.[21] Furthermore, the anus becomes redirected to the same space as the head. This is speculated to have some evolutionary function, as prior to torsion, when retracting into the shell, first the posterior end would get pulled in, and then the anterior. Now, the front can be retracted more easily, perhaps suggesting a defensive purpose.[citation needed
]

Gastropods typically have a well-defined

head with two or four sensory tentacles with eyes, and a ventral foot. The foremost division of the foot is called the propodium. Its function is to push away sediment as the snail crawls. The larval shell of a gastropod is called a protoconch.[citation needed
]

Shell

The shell of Zonitoides nitidus, a small land snail, has dextral coiling, which is typical (but not universal) of gastropod shells.
The shell of Physella acuta, a freshwater snail, which is left-coiling (sinistral).

Most shelled gastropods have a one piece shell (with exceptional bivalved gastropods), typically coiled or spiraled, at least in the larval stage. This coiled shell usually opens on the right-hand side (as viewed with the shell apex pointing upward). Numerous species have an operculum, which in many species acts as a trapdoor to close the shell. This is usually made of a horn-like material, but in some molluscs it is calcareous. In the land slugs, the shell is reduced or absent, and the body is streamlined.

Some gastropods have adult shells which are bottom heavy due to the presence of a thick, often broad, convex ventral callus deposit on the inner lip and adapical to the aperture which may be important for gravitational stability.[22]

Body wall

Some

hydroids, sponges, and seaweeds on which many of the species are found.[citation needed
]

Lateral outgrowths on the body of

]

Sensory organs and nervous system

olfaction, situated in the epithelium
of the tentacles.

The

olfactory organs, eyes, statocysts and mechanoreceptors.[23] Gastropods have no hearing.[23]

In terrestrial gastropods (land snails and slugs), the olfactory organs, located on the tips of the four

opisthobranch marine gastropods are called rhinophores
.

The majority of gastropods have simple visual organs, eye spots either at the tip or

ocelli that only distinguish light and dark, to more complex pit eyes, and even to lens eyes.[24] In land snails and slugs, vision is not the most important sense, because they are mainly nocturnal animals.[23]

The nervous system of gastropods includes the

ganglia connected by nerve cells. It includes paired ganglia: the cerebral ganglia, pedal ganglia, osphradial ganglia, pleural ganglia, parietal ganglia and the visceral ganglia. There are sometimes also buccal ganglia.[23]

Digestive system

The radula of a gastropod is usually adapted to the food that a species eats. The simplest gastropods are the limpets and abalone, herbivores that use their hard radula to rasp at seaweeds on rocks.[citation needed]

Many marine gastropods are burrowers, and have a

mantle cavity and over the gill. They use the siphon primarily to "taste" the water to detect prey from a distance. Gastropods with siphons tend to be either predators or scavengers.[citation needed
]

Respiratory system

Almost all marine gastropods breathe with a gill, but many freshwater species, and the majority of terrestrial species, have a pallial lung. The respiratory protein in almost all gastropods is hemocyanin, but one freshwater pulmonate family, the Planorbidae, have hemoglobin as the respiratory protein.[citation needed]

In one large group of sea slugs, the gills are arranged as a rosette of feathery plumes on their backs, which gives rise to their other name, nudibranchs. Some nudibranchs have smooth or warty backs with no visible gill mechanism, such that respiration may likely take place directly through the skin.

Circulatory system

Gastropods have open circulatory system and the transport fluid is hemolymph. Hemocyanin is present in the hemolymph as the respiratory pigment.[citation needed]

Excretory system

The primary organs of excretion in gastropods are nephridia, which produce either ammonia or uric acid as a waste product. The nephridium also plays an important role in maintaining water balance in freshwater and terrestrial species. Additional organs of excretion, at least in some species, include pericardial glands in the body cavity, and digestive glands opening into the stomach.[citation needed]

Reproductive system

Mating behaviour of Elysia timida

Courtship is a part of mating behavior in some gastropods, including some of the Helicidae. Again, in some land snails, an unusual feature of the reproductive system of gastropods is the presence and utilization of love darts.[citation needed]

In many marine gastropods other than the

dioecious/gonochoric); most land gastropods, however, are hermaphrodites.[citation needed
]

Life cycle

Egg strings of an Aplysia species.

pulmonate families of land snails creating and utilizing love darts, the throwing of which have been identified as a form of sexual selection.[25]

The main aspects of the life cycle of gastropods include:

Feeding behavior

An apple snail, Pomacea maculata, floating and eating a piece of carrot

The diet of gastropods differs according to the group considered. Marine gastropods include some that are

parasites, and also a few ciliary feeders, in which the radula is reduced or absent. Land-dwelling species can chew up leaves, bark, fruit, fungi, and decomposing animals while marine species can scrape algae off the rocks on the seafloor. Certain species such as the Archaeogastropoda maintain horizontal rows of slender marginal teeth. In some species that have evolved into endoparasites, such as the eulimid Thyonicola doglieli, many of the standard gastropod features are strongly reduced or absent.[citation needed
]

A few sea slugs are herbivores and some are carnivores. The carnivorous habit is due to specialisation. Many gastropods have distinct dietary preferences and regularly occur in close association with their food species.

Some predatory carnivorous gastropods include:

ghost slugs
and others.

Terrestrial gastropods

Studies based on direct observations,

ecological importance, there is a notable lack of research exploring the specific roles that terrestrial gastropods play within soil food webs.[26]

Fungivory

Ariolimax, feeding on an Amanita mushroom

Many terrestrial gastropod mollusks are known to consume fungi, a behavior observed in various species of snails and slugs across distinct families.

basidiomycetes).[29] Snail families that contain fungivore species include Clausiliidae,[30] Macrocyclidae,[31] and Polygyridae.[32]

Mushroom-producing fungi used as a food source by snails and slugs include species from several genera. Some examples are

Feeding behaviors in slugs exhibit considerable variation. Some species display selectivity, consuming specific parts or developmental stages of fungi. For instance, certain slugs may target fungi only at particular stages of maturity, such as immature fruiting bodies or spore-producing structures.[29] Conversely, other species show little to no selectivity, consuming entire mushrooms regardless of developmental stage. This variability stresses the diverse dietary adaptations among slug species and their ecological roles in fungal consumption.[29] Moreover, by consuming fungi, snails and slugs can also indirectly help in their dispersal by carrying along some of their spores[29][34] or the fungi themselves.[35]

Genetics

Gastropods exhibit an important degree of variation in

transposition of tRNA genes.[36]

Geological history and evolution

Trochonema sp., an early gastropod from the Middle Ordovician of the Galena Group of Minnesota.
bivalves on a Jurassic limestone bedding plane of the Matmor Formation in southern Israel
.

The first gastropods were exclusively marine, with the earliest known representatives appearing in the Late Cambrian (e.g., Chippewaella, Strepsodiscus).[37] However, their only definitive gastropod feature is a coiled shell, which raises the possibility that they may belong to the stem lineage of gastropods, or might not be gastropods at all.[38] Early Cambrian species such as Helcionella, Barskovia, and Scenella are no longer considered gastropods, and the small coiled Aldanella from the same period is probably not even a mollusk.[citation needed]

It is not until the

bivalves.[39]

Most Paleozoic gastropods belong to primitive groups, some of which still exist today. By the

Coal Measures of Europe.[40] However, land snails and their relatives were rare before the Cretaceous period.[39]

In Mesozoic rocks, gastropods become more common in the fossil record, with well-preserved shells. Fossils are found in ancient beds from both freshwater and marine environments. Notable examples include the Purbeck Marble of the Jurassic and the Sussex Marble of the early Cretaceous, both from southern England. These limestones contain abundant remains of the pond snail Viviparus.[39] Cenozoic rocks yield vast numbers of gastropod fossils, many of which are closely related to modern species. The diversity of gastropods increased significantly at the start of this era, alongside that of bivalves.[39]

Certain trail-like markings preserved in ancient sedimentary rocks are thought to have been made by gastropods crawling over the soft mud and sand. Although these trace fossils are of debatable origin, some of them do resemble the trails made by living gastropods today.[39]

Gastropod fossils may sometimes be confused with

ammonites or other shelled cephalopods. An example of this is Bellerophon from the limestones of the Carboniferous period in Europe, the shell of which is planispirally coiled and can be mistaken for the shell of a cephalopod.[citation needed
]

Gastropods also provide important evidence of faunal changes during the

]

Cretaceous_Gastropod_Fossils_Lebanon

Phylogeny

A cladogram showing the phylogenic relationships of Gastropoda with example species:[41]

Gastropoda

Neomphaliones and Lower Heterobranchia are not included in the above cladogram.

Taxonomy

Current classification

The present backbone classification of gastropods relies on the results of phylogenomic analyses. Consensus has not been reached yet considering the relationships at the very base of the gastropod tree of life, but otherwise the major groups are known with confidence.[42][43][44]

A group of fossil shells of Turritella cingulifera from the Pliocene of Cyprus
Five views of a shell of a Fulguropsis species
Microphoto (35x) of Gastropoda sp. from Holocene sediments of Amuq Plain SSE Turkey

History

Since

phylogeny of organisms, i.e., the tree of life
. The classifications used in taxonomy attempt to represent the precise interrelatedness of the various taxa. However, the taxonomy of the Gastropoda is constantly being revised and so the versions shown in various texts can differ in major ways.

In the older classification of the gastropods, there were four subclasses:[45]

The taxonomy of the Gastropoda is still under revision, and more and more of the old taxonomy is being abandoned, as the results of DNA studies slowly become clearer. Nevertheless, a few of the older terms such as "opisthobranch" and "prosobranch" are still sometimes used in a descriptive way.

New insights based on DNA sequencing of gastropods have produced some revolutionary new taxonomic insights. In the case of the Gastropoda, the taxonomy is now gradually being rewritten to embody strictly

monophyletic groups (only one lineage of gastropods in each group). Integrating new findings into a working taxonomy remain challenging. Consistent ranks within the taxonomy at the level of subclass, superorder, order, and suborder have already been abandoned as unworkable. Ongoing revisions of the higher taxonomic levels are expected in the near future.[when?
]

Convergent evolution, which appears to exist at especially high frequency in gastropods, may account for the observed differences between the older phylogenies, which were based on morphological data, and more recent gene-sequencing studies.

In 2004, Brian Simison and

amino acid sequence analyses of complete genes.[46]

In 2005,

phenetic morphological characters of the taxa. The recent advances are more based on molecular characters from DNA[48] and RNA
research. This has made the taxonomical ranks and their hierarchy controversial.

In 2017, Bouchet, Rocroi, and other collaborators published a significantly updated version of the 2005 taxonomy.[49] In the Bouchet et al. taxonomy, the authors used unranked clades for taxa above the rank of superfamily (replacing the ranks suborder, order, superorder and subclass), while using the traditional Linnaean approach for all taxa below the rank of superfamily. Whenever monophyly has not been tested, or is known to be paraphyletic or polyphyletic, the term "group" or "informal group" has been used. The classification of families into subfamilies is often not well resolved.[citation needed]

Fixed ranks like family, genus, and species however remain useful for practical classification and remain used in the World Register of Marine Species (WoRMS). Also many researchers continue to use traditional ranks because they are entrenched in the literature and familiar to specialists and non-specialists alike.

Ecology and conservation

Many gastropod species face threats from habitat destruction, pollution, and climate change. Some species are endangered or have become extinct due to these factors. Conservation efforts often focus on protecting their habitats, especially in freshwater and terrestrial ecosystems.

Predators

Gastropods are

harvestmen),[50] birds, and mammals
, among others.

References

  1. .
  2. ^ a b Cuvier, G (1795). "Second mémoire sur l'organisation et les rapports des animaux à sang blanc, dans lequel on traite de la structure des Mollusques et de leur division en ordres, lu à la Société d'histoire naturelle de Paris, le 11 Prairial, an III". Magazin Encyclopédique, ou Journal des Sciences, des Lettres et des Arts (in French). 2: 433–449. Archived from the original on 2017-07-25.
  3. ^
    ISBN 3-925919-72-4. 397 pp. vliz.be Archived 2020-07-14 at the Wayback Machine
  4. ^ a b Solem, A.G. "Gastropod". Encyclopaedia Britannica. Encyclopaedia Britannica Inc. Archived from the original on 8 March 2016. Retrieved 6 March 2017.
  5. ^ a b Bieler R, Bouchet P, Gofas S, Marshall B, Rosenberg G, La Perna R, Neubauer TA, Sartori AF, Schneider S, Vos C, ter Poorten JJ, Taylor J, Dijkstra H, Finn J, Bank R, Neubert E, Moretzsohn F, Faber M, Houart R, Picton B, Garcia-Alvarez O, eds. (2020). "Gastropoda". MolluscaBase. World Register of Marine Species. Retrieved 2020-09-29.
  6. S2CID 91051256
    .
  7. ^ "Gastropod". Online Etymology Dictionary. Archived from the original on 6 October 2018. Retrieved 3 September 2019.
  8. ^ McArthur, A.G.; M.G. Harasewych (2003). "Molecular systematics of the major lineages of the Gastropoda.". In C. Lydeard; D.R. Lindberg (eds.). Molecular Systematics and Phylogeography of Mollusks. Washington: Smithsonian Books. pp. 140–160.
  9. ^ (online).
  10. ^ Appeltans W., Bouchet P., Boxshall G.A., Fauchald K., Gordon D.P., Hoeksema B.W., Poore G.C.B., van Soest R.W.M., Stöhr S., Walter T.C., Costello M.J. (eds) (2011). World Register of Marine Species. Accessed at marinespecies.org Archived 2015-10-03 at archive.today on 2011-03-07.
  11. ^ "Census of Marine Life (2012). SYNDEEP: Towards a first global synthesis of biodiversity, biogeography and ecosystem function in the deep sea. Unpublished data (datasetID: 59)" (PDF). Archived from the original on 2019-06-30. Retrieved 2019-04-25.
  12. ^ "gastropod" Archived 2008-10-13 at the Wayback Machine. (2010). In Encyclopædia Britannica. Retrieved March 05, 2010, from Encyclopædia Britannica Online.
  13. S2CID 44234861
    .
  14. .
  15. ^ (in Spanish) Nájera J. M. (1996). "Moluscos del suelo como plagas agrícolas y cuarentenarias". X Congreso Nacional Agronómico / II Congreso de Suelos 1996 51-56. PDF Archived 2011-07-21 at the Wayback Machine
  16. S2CID 43572097
    .
  17. .
  18. ^ RUSIECKI S. & RUSIECKA A. 2013. Hairy snail Trochulus hispidus (Linnaeus, 1758) in flight - a note on avian dispersal of snails. Archived 2013-09-16 at the Wayback Machine Folia Malacologica 21(2):111-112.
  19. .
  20. .
  21. ^ Suter, Henry. Manual of the New Zealand mollusca /. J. Mackay, govt. printer. Archived from the original on 2017-09-26. Retrieved 2018-01-14.
  22. from the original on 2023-08-23. Retrieved 2022-01-04.
  23. ^ . 1-146, cited pages: 179–211.
  24. .
  25. from the original on September 1, 2019. Retrieved August 31, 2019 – via academic.oup.com.
  26. ^ .
  27. .
  28. .
  29. ^ .
  30. .
  31. ^ .
  32. .
  33. .
  34. .
  35. .
  36. ^ .
  37. .
  38. ^ Budd, G. E., and S. Jensen. 2000: A critical reappraisal of the fossil record of the bilaterian phyla. Biological Reviews 75:253–295.
  39. ^ a b c d e f g Be'Norr, K., and J. FnÍon (1999). "Notes on the evolution and higher classification of the subclass Neritimorpha (Gastropoda) with the description of some new taxa" (PDF). Geol. Et Palaeont 33: 219–235. Archived (PDF) from the original on 2017-12-13. Retrieved 2017-12-13.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  40. from the original on 2023-08-23. Retrieved 2022-07-29.
  41. .
  42. ^ .
  43. ^ from the original on 2023-08-23. Retrieved 2023-08-10.
  44. .
  45. ^ Paul Jeffery.Suprageneric classification of class Gastropoda. The Natural History Museum, London, 2001.
  46. ^ "Unitas malacologica, Newsletter number 21 december 2004 - a .pdf file" (PDF). Archived (PDF) from the original on 15 June 2011. Retrieved 9 March 2009.
  47. ^ Poppe G.T. & Tagaro S.P. 2006. The new classification of Gastropods according to Bouchet & Rocroi, 2005. Visaya, février 2006: 10 pp. journal-malaco.fr Archived 2007-09-27 at the Wayback Machine
  48. PMID 14615199. Archived from the original
    (PDF) on 2007-09-27.
  49. ^ Philippe Bouchet, Jean-Pierre Rocroi, Bernhard Hausdorf, Andrzej Kaim, Yasunori Kano, Alexander Nützel, Pavel Parkhaev, Michael Schrödl and Ellen E. Strong. 2017. Revised Classification, Nomenclator and Typification of Gastropod and Monoplacophoran Families Archived 2023-08-23 at the Wayback Machine. Malacologia, 61(1-2): 1-526.
  50. .

Sources