Gaussian curvature

Source: Wikipedia, the free encyclopedia.
cylinder), and a surface of positive Gaussian curvature (sphere
).
Some points on the torus have positive, some have negative, and some have zero Gaussian curvature.

In differential geometry, the Gaussian curvature or Gauss curvature Κ of a smooth surface in three-dimensional space at a point is the product of the principal curvatures, κ1 and κ2, at the given point:

The Gaussian radius of curvature is the reciprocal of Κ. For example, a sphere of radius r has Gaussian curvature 1/r2 everywhere, and a flat plane and a cylinder have Gaussian curvature zero everywhere. The Gaussian curvature can also be negative, as in the case of a hyperboloid or the inside of a torus.

Gaussian curvature is an intrinsic measure of

Theorema egregium
.

Gaussian curvature is named after

Theorema egregium
in 1827.

Informal definition

Saddle surface
with normal planes in directions of principal curvatures

At any point on a surface, we can find a

normal curvature. For most points on most “smooth” surfaces, different normal sections will have different curvatures; the maximum and minimum values of these are called the principal curvatures
, call these κ1, κ2. The Gaussian curvature is the product of the two principal curvatures Κ = κ1κ2.

The sign of the Gaussian curvature can be used to characterise the surface.

Most surfaces will contain regions of positive Gaussian curvature (elliptical points) and regions of negative Gaussian curvature separated by a curve of points with zero Gaussian curvature called a parabolic line.

Relation to geometries

When a surface has a constant zero Gaussian curvature, then it is a developable surface and the geometry of the surface is Euclidean geometry.

When a surface has a constant positive Gaussian curvature, then the geometry of the surface is spherical geometry. Spheres and patches of spheres have this geometry, but there exist other examples as well, such as the lemon / American football.

When a surface has a constant negative Gaussian curvature, then it is a

pseudospherical surface and the geometry of the surface is hyperbolic geometry
.

Relation to principal curvatures

The two principal curvatures at a given point of a

shape operator at the point. They measure how the surface bends by different amounts in different directions from that point. We represent the surface by the implicit function theorem as the graph of a function, f, of two variables, in such a way that the point p is a critical point, that is, the gradient of f vanishes (this can always be attained by a suitable rigid motion). Then the Gaussian curvature of the surface at p is the determinant of the Hessian matrix
of f (being the product of the eigenvalues of the Hessian). (Recall that the Hessian is the 2×2 matrix of second derivatives.) This definition allows one immediately to grasp the distinction between a cup/cap versus a saddle point.

Alternative definitions

It is also given by

where i = ∇ei is the
covariant derivative and g is the metric tensor.

At a point p on a regular surface in R3, the Gaussian curvature is also given by

where S is the
shape operator
.

A useful formula for the Gaussian curvature is

Liouville's equation in terms of the Laplacian in isothermal coordinates
.

Total curvature

The sum of the angles of a triangle on a surface of negative curvature is less than that of a plane triangle.

The

geodesic triangle equals the deviation of the sum of its angles from π. The sum of the angles of a triangle on a surface of positive curvature will exceed π, while the sum of the angles of a triangle on a surface of negative curvature will be less than π. On a surface of zero curvature, such as the Euclidean plane
, the angles will sum to precisely π radians.
A more general result is the
Gauss–Bonnet theorem.

Important theorems

Theorema egregium

Gauss's Theorema egregium (Latin: "remarkable theorem") states that Gaussian curvature of a surface can be determined from the measurements of length on the surface itself. In fact, it can be found given the full knowledge of the

isometric
deformations of the surface.

In contemporary

Riemannian metric given by the first fundamental form. Suppose that the image of the embedding is a surface S in R3. A local isometry is a diffeomorphism
f : UV between open regions of R3 whose restriction to SU is an isometry onto its image. Theorema egregium is then stated as follows:

The Gaussian curvature of an embedded smooth surface in R3 is invariant under the local isometries.

For example, the Gaussian curvature of a

cartographic projection
is perfect.

Gauss–Bonnet theorem

The Gauss–Bonnet theorem relates the total curvature of a surface to its Euler characteristic and provides an important link between local geometric properties and global topological properties.

Surfaces of constant curvature

Two surfaces which both have constant positive Gaussian curvature but with either an open boundary or singular points.
  • closed surface
    with constant positive curvature is necessarily rigid.
  • Liebmann's theorem (1900) answered Minding's question. The only regular (of class C2) closed surfaces in R3 with constant positive Gaussian curvature are spheres.[2] If a sphere is deformed, it does not remain a sphere, proving that a sphere is rigid. A standard proof uses Hilbert's lemma that non-umbilical points of extreme principal curvature have non-positive Gaussian curvature.[3]
  • Hilbert's theorem (1901) states that there exists no complete analytic (class Cω) regular surface in R3 of constant negative Gaussian curvature. In fact, the conclusion also holds for surfaces of class C2 immersed in R3, but breaks down for C1-surfaces. The pseudosphere has constant negative Gaussian curvature except at its boundary circle, where the gaussian curvature is not defined.

There are other surfaces which have constant positive Gaussian curvature. Manfredo do Carmo considers surfaces of revolution where , and (an incomplete Elliptic integral of the second kind). These surfaces all have constant Gaussian curvature of 1, but, for either have a boundary or a singular point. do Carmo also gives three different examples of surface with constant negative Gaussian curvature, one of which is pseudosphere.[4]

There are many other possible bounded surfaces with constant Gaussian curvature. Whilst the sphere is rigid and can not be bent using an isometry, if a small region removed, or even a cut along a small segment, then the resulting surface can be bent. Such bending preserves Gaussian curvature so any such bending of a sphere with a region removed will also have constant Gaussian curvature.[5]

Alternative formulas

  • Gaussian curvature of a surface in R3 can be expressed as the ratio of the determinants of the second and first fundamental forms II and I:
  • The Brioschi formula (after Francesco Brioschi) gives Gaussian curvature solely in terms of the first fundamental form:
  • For an orthogonal parametrization (F = 0), Gaussian curvature is:
  • For a surface described as graph of a function z = F(x,y), Gaussian curvature is:[6]
  • For an implicitly defined surface, F(x,y,z) = 0, the Gaussian curvature can be expressed in terms of the gradient F and Hessian matrix H(F):[7][8]
  • For a surface with metric conformal to the Euclidean one, so F = 0 and E = G = eσ, the Gauss curvature is given by (Δ being the usual Laplace operator):
  • Gaussian curvature is the limiting difference between the circumference of a geodesic circle and a circle in the plane:[9]
  • Gaussian curvature is the limiting difference between the
    geodesic disk and a disk in the plane:[9]
  • Gaussian curvature may be expressed with the Christoffel symbols:[10]

See also

References

  1. .
  2. .
  3. ..
  4. – via zbMATH.
  5. .
  6. ^ "General investigations of curved surfaces of 1827 and 1825". [Princeton] The Princeton university library. 1902.
  7. .
  8. ^ Spivak, M. (1975). A Comprehensive Introduction to Differential Geometry. Vol. 3. Boston: Publish or Perish.
  9. ^
    Bertrand–Diquet–Puiseux theorem
  10. .

Books

External links