Geology of Mars

Source: Wikipedia, the free encyclopedia.
geological map of Mars[1]
Mars as seen by the Hubble Space Telescope

The geology of Mars is the scientific study of the surface, crust, and interior of the planet Mars. It emphasizes the composition, structure, history, and physical processes that shape the planet. It is analogous to the field of terrestrial geology. In planetary science, the term geology is used in its broadest sense to mean the study of the solid parts of planets and moons. The term incorporates aspects of geophysics, geochemistry, mineralogy, geodesy, and cartography.[2] A neologism, areology, from the Greek word Arēs (Mars), sometimes appears as a synonym for Mars's geology in the popular media and works of science fiction (e.g. Kim Stanley Robinson's Mars trilogy).[3] The term areology is also used by the Areological Society.[4]

Geological map of Mars (2014)

USGS; July 14, 2014) (full image)[5][6][7]
  • Figure 2 for the geologic map of Mars
    Figure 2 for the geologic map of Mars

Global Martian topography and large-scale features

Map of Mars
global topography of Mars, overlaid with the position of Martian rovers and landers. Coloring of the base map indicates relative elevations of Martian surface.
Clickable image: Clicking on the labels will open a new article.
Legend:   Active (white lined, ※)  Inactive  Planned (dash lined, ⁂) )
Bradbury Landing
Deep Space 2
Mars Polar Lander
Perseverance
Schiaparelli EDM
Spirit
Viking 1

Composition of Mars

Mars is a terrestrial planet, which has undergone the process of planetary differentiation.

The

radioactive magma ocean under its crust.[11]

Global physiography

Mars has a number of distinct, large-scale surface features that indicate the types of geological processes that have operated on the planet over time. This section introduces several of the larger physiographic regions of Mars. Together, these regions illustrate how geologic processes involving

tectonism, water, ice, and impacts
have shaped the planet on a global scale.

Hemispheric dichotomy

Mars Orbital Laser Altimeter (MOLA) colorized shaded-relief maps showing elevations in the western and eastern hemispheres of Mars. (Left): The western hemisphere is dominated by the Tharsis region (red and brown). Tall volcanoes appear white. Valles Marineris (blue) is the long gash-like feature to the right. (Right): Eastern hemisphere shows the cratered highlands (yellow to red) with the Hellas basin (deep blue/purple) at lower left. The Elysium province is at the upper right edge. Areas north of the dichotomy boundary appear as shades of blue on both maps.

The northern and southern hemispheres of Mars are strikingly different from each other in

heavy bombardment. In contrast, the lowlands north of the dichotomy boundary have few large craters, are very smooth and flat, and have other features indicating that extensive resurfacing has occurred since the southern highlands formed. The third distinction between the two hemispheres is in crustal thickness. Topographic and geophysical gravity data indicate that the crust in the southern highlands has a maximum thickness of about 58 km (36 mi), whereas the crust in the northern lowlands "peaks" at around 32 km (20 mi) in thickness.[14][15]
The location of the dichotomy boundary varies in latitude across Mars and depends on which of the three physical expressions of the dichotomy is being considered.

The origin and age of the hemispheric dichotomy are still debated.[16] Hypotheses of origin generally fall into two categories: one, the dichotomy was produced by a mega-impact event or several large impacts early in the planet's history (exogenic theories)[17][18][19] or two, the dichotomy was produced by crustal thinning in the northern hemisphere by mantle convection, overturning, or other chemical and thermal processes in the planet's interior (endogenic theories).[20][21] One endogenic model proposes an early episode of plate tectonics producing a thinner crust in the north, similar to what is occurring at spreading plate boundaries on Earth.[22] Whatever its origin, the Martian dichotomy appears to be extremely old. A new theory based on the Southern Polar Giant Impact[23] and validated by the discovery of twelve hemispherical alignments[24] shows that exogenic theories appear to be stronger than endogenic theories and that Mars never had plate tectonics[25][26] that could modify the dichotomy. Laser altimeters and radar-sounding data from orbiting spacecraft have identified a large number of basin-sized structures previously hidden in visual images. Called quasi-circular depressions (QCDs), these features likely represent derelict impact craters from the period of heavy bombardment that are now covered by a veneer of younger deposits. Crater counting studies of QCDs suggest that the underlying surface in the northern hemisphere is at least as old as the oldest exposed crust in the southern highlands.[27] The ancient age of the dichotomy places a significant constraint on theories of its origin.[28]

Tharsis and Elysium volcanic provinces

The Tharsis region with main features annotated. The Tharsis Montes are the three aligned volcanoes at the center bottom. Olympus Mons sits off at the center left. The feature at the upper right is Alba Mons.
The Tharsis region with main features annotated. The Tharsis Montes are the three aligned volcanoes at the center bottom. Olympus Mons sits off at the center left. The feature at the upper right is Alba Mons.

Straddling the dichotomy boundary in Mars's western hemisphere is a massive volcano-tectonic province known as the

grabens and rift valleys) radiate outward from Tharsis, extending halfway around the planet.[30]

A smaller volcanic center lies several thousand kilometers west of Tharsis in Elysium. The Elysium volcanic complex is about 2,000 kilometers in diameter and consists of three main volcanoes, Elysium Mons, Hecates Tholus, and Albor Tholus. The Elysium group of volcanoes is thought to be somewhat different from the Tharsis Montes, in that development of the former involved both lavas and pyroclastics.[31]

Large impact basins

Several enormous, circular impact basins are present on Mars. The largest one that is readily visible is the Hellas basin located in the southern hemisphere. It is the second largest confirmed impact structure on the planet, centered at about 64°E longitude and 40°S latitude. The central part of the basin (Hellas Planitia) is 1,800 km in diameter[32] and surrounded by a broad, heavily eroded annular rim structure characterized by closely spaced rugged irregular mountains (massifs), which probably represent uplifted, jostled blocks of old pre-basin crust.[33] (See Anseris Mons, for example.) Ancient, low-relief volcanic constructs (highland paterae) are located on the northeastern and southwestern parts of the rim. The basin floor contains thick, structurally complex sedimentary deposits that have a long geologic history of deposition, erosion, and internal deformation. The lowest elevations on the planet are located within the Hellas basin, with some areas of the basin floor lying over 8 km below datum.[34]

The two other large impact structures on the planet are the

Orientale
basins on the Moon.

Equatorial canyon system

Viking Orbiter 1 view image of Valles Marineris.

Near the equator in the western hemisphere lies an immense system of deep, interconnected canyons and troughs collectively known as the Valles Marineris. The canyon system extends eastward from Tharsis for a length of over 4,000 km, nearly a quarter of the planet's circumference. If placed on Earth, Valles Marineris would span the width of North America.[36] In places, the canyons are up to 300 km wide and 10 km deep. Often compared to Earth's Grand Canyon, the Valles Marineris has a very different origin than its tinier, so-called counterpart on Earth. The Grand Canyon is largely a product of water erosion. The Martian equatorial canyons were of tectonic origin, i.e. they were formed mostly by faulting. They could be similar to the East African Rift valleys.[37] The canyons represent the surface expression of a powerful extensional strain in the Martian crust, probably due to loading from the Tharsis bulge.[38]

Chaotic terrain and outflow channels

The terrain at the eastern end of the Valles Marineris grades into dense jumbles of low rounded hills that seem to have formed by the collapse of upland surfaces to form broad, rubble-filled hollows.

chaotic terrain, these areas mark the heads of huge outflow channels that emerge full size from the chaotic terrain and empty (debouch) northward into Chryse Planitia. The presence of streamlined islands and other geomorphic features indicate that the channels were most likely formed by catastrophic releases of water from aquifers or the melting of subsurface ice. However, these features could also be formed by abundant volcanic lava flows coming from Tharsis.[40] The channels, which include Ares, Shalbatana, Simud, and Tiu Valles, are enormous by terrestrial standards, and the flows that formed them correspondingly immense. For example, the peak discharge required to carve the 28-km-wide Ares Vallis is estimated to have been 14 million cubic metres (500 million cu ft) per second, over ten thousand times the average discharge of the Mississippi River.[41]

Mars Orbital Laser Altimeter (MOLA) derived image of Planum Boreum. Vertical exaggeration is extreme. Note that residual ice cap is only the thin veneer (shown in white) on top of the plateau.

Ice caps

The polar ice caps are well-known telescopic features of Mars, first identified by

frost point of CO2, during the polar wintertime.[43] In the north, the CO2 ice completely dissipates (sublimes
) in summer, leaving behind a residual cap of water (H2O) ice. At the south pole, a small residual cap of CO2 ice remains in summer.

Both residual ice caps overlie thick layered deposits of interbedded ice and dust. In the north, the layered deposits form a 3 km-high, 1,000 km-diameter plateau called Planum Boreum. A similar kilometers-thick plateau, Planum Australe, lies in the south. Both plana (the Latin plural of planum) are sometimes treated as synonymous with the polar ice caps, but the permanent ice (seen as the high albedo, white surfaces in images) forms only a relatively thin mantle on top of the layered deposits. The layered deposits probably represent alternating cycles of dust and ice deposition caused by climate changes related to variations in the planet's orbital parameters over time (see also Milankovitch cycles). The polar layered deposits are some of the youngest geologic units on Mars.

Geological history

Albedo features

Mollweide projection of albedo features on Mars from Hubble Space Telescope. Bright ochre areas in left, center, and right are Tharsis, Arabia, and Elysium, respectively. The dark region at top center left is Acidalia Planitia. Syrtis Major is the dark area projecting upward in the center right. Note orographic clouds over Olympus and Elysium Montes (left and right, respectively).

No topography is visible on Mars from Earth. The bright areas and dark markings seen through a telescope are albedo features. The bright, red-ochre areas are locations where fine dust covers the surface. Bright areas (excluding the polar caps and clouds) include Hellas, Tharsis, and Arabia Terra. The dark gray markings represent areas that the wind has swept clean of dust, leaving behind the lower layer of dark, rocky material. Dark markings are most distinct in a broad belt from 0° to 40° S latitude. However, the most prominent dark marking, Syrtis Major Planum, is in the northern hemisphere.[44] The classical albedo feature, Mare Acidalium (Acidalia Planitia), is another prominent dark area in the northern hemisphere. A third type of area, intermediate in color and albedo, is also present and thought to represent regions containing a mixture of the material from the bright and dark areas.[45]

Impact craters

Impact craters were first identified on Mars by the Mariner 4 spacecraft in 1965.[46] Early observations showed that Martian craters were generally shallower and smoother than lunar craters, indicating that Mars has a more active history of erosion and deposition than the Moon.[47]

In other aspects, Martian craters resemble lunar craters. Both are products of

multi-ring basins.[49]

Mars has the greatest diversity of impact crater types of any planet in the Solar System.[50] This is partly because the presence of both rocky and volatile-rich layers in the subsurface produces a range of morphologies even among craters within the same size classes. Mars also has an atmosphere that plays a role in ejecta emplacement and subsequent erosion. Moreover, Mars has a rate of volcanic and tectonic activity low enough that ancient, eroded craters are still preserved, yet high enough to have resurfaced large areas, producing a diverse range of crater populations of widely differing ages. Over 42,000 impact craters greater than 5 km in diameter have been catalogued on Mars,[51] and the number of smaller craters is probably innumerable. The density of craters on Mars is highest in the southern hemisphere, south of the dichotomy boundary. This is where most of the large craters and basins are located.

Crater morphology provides information about the physical structure and composition of the surface and subsurface at the time of impact. For example, the size of central peaks in Martian craters is larger than comparable craters on Mercury or the Moon.

soil creep by ground ice.[53]

The most notable difference between Martian craters and other craters in the Solar System is the presence of lobate (fluidized) ejecta blankets. Many craters at equatorial and mid-latitudes on Mars have this form of ejecta morphology, which is thought to arise when the impacting object melts ice in the subsurface. Liquid water in the ejected material forms a muddy slurry that flows along the surface, producing the characteristic lobe shapes.

Yuty is a good example of a rampart crater, which is so called because of the rampart-like edge to its ejecta blanket.[56]

  • HiRISE image of simple rayed crater on southeastern flank of Elysium Mons.
    HiRISE image of simple rayed crater on southeastern flank of Elysium Mons.
  • THEMIS image of complex crater with fluidized ejecta. Note central peak with pit crater.
    THEMIS image of complex crater with fluidized ejecta. Note central peak with pit crater.
  • Viking orbiter image of Yuty crater showing lobate ejecta.
    Viking orbiter image of Yuty crater showing lobate ejecta.
  • THEMIS close-up view of ejecta from 17-km diameter crater at 21°S, 285°E. Note prominent rampart.
    THEMIS close-up view of ejecta from 17-km diameter crater at 21°S, 285°E. Note prominent rampart.

Martian craters are commonly classified by their ejecta. Craters with one ejecta layer are called single-layer ejecta (SLE) craters. Craters with two superposed ejecta blankets are called double-layer ejecta (DLE) craters, and craters with more than two ejecta layers are called multiple-layered ejecta (MLE) craters. These morphological differences are thought to reflect compositional differences (i.e. interlayered ice, rock, or water) in the subsurface at the time of impact.[57][58]

Pedestal crater in Amazonis quadrangle as seen by HiRISE.

Martian craters show a large diversity of preservational states, from extremely fresh to old and eroded. Degraded and infilled impact craters record variations in

fluvial, and eolian activity over geologic time.[59] Pedestal craters are craters with their ejecta sitting above the surrounding terrain to form raised platforms. They occur because the crater's ejecta forms a resistant layer so that the area nearest the crater erodes more slowly than the rest of the region. Some pedestals were hundreds of meters above the surrounding area, meaning that hundreds of meters of material were eroded. Pedestal craters were first observed during the Mariner 9 mission in 1972.[60][61][62]

Volcanism

Curiosity rover at "Rocknest").[63]

Volcanic structures and landforms cover large parts of the Martian surface. The most conspicuous volcanoes on Mars are located in Tharsis and Elysium. Geologists think one of the reasons volcanoes on Mars were able to grow so large is that Mars has fewer tectonic boundaries in comparison to Earth.[64] Lava from a stationary hot spot was able to accumulate at one location on the surface for many hundreds of millions of years.

Scientists have never recorded an active volcano eruption on the surface of Mars.[65] Searches for thermal signatures and surface changes within the last decade have not yielded evidence for active volcanism.[66]

On October 17, 2012, the

Hawaiian volcanoes.[63] In July 2015, the same rover identified tridymite in a rock sample from Gale Crater, leading scientists to conclude that silicic volcanism might have played a much more prevalent role in the planet's volcanic history than previously thought.[67]

Sedimentology

Collection of spheres, each about 3 mm in diameter as seen by Opportunity rover

Flowing water appears to have been common on the surface of Mars at various points in its history, and especially on ancient Mars.

alluvial fans, meandering channels, deltas, lakes, and perhaps even oceans.[69][70][71] The processes of deposition and transportation are associated with gravity. Due to gravity, related differences in water fluxes and flow speeds, inferred from grain size distributions, Martian landscapes were created by different environmental conditions.[72] Nevertheless, there are other ways of estimating the amount of water on ancient Mars (see: Water on Mars). Groundwater has been implicated in the cementation of aeolian sediments and the formation and transport of a wide variety of sedimentary minerals including clays, sulphates and hematite.[73]

When the surface has been dry, wind has been a major geomorphic agent. Wind driven sand bodies like megaripples and

Ventifacts, like Jake Matijevic (rock), are another aeolian landform on the Martian Surface.[75]

A wide variety of other sedimentological facies are also present locally on Mars, including

periglacial material, amongst many others.[69] Evidence for ancient rivers,[76] a lake,[77][78] and dune fields[79][80][81]
have all been observed in the preserved strata by rovers at Meridiani Planum and Gale crater.

Common surface features

Groundwater on Mars

One group of researchers proposed that some of the layers on Mars were caused by groundwater rising to the surface in many places, especially inside of craters. According to the theory, groundwater with dissolved minerals came to the surface, in and later around craters, and helped to form layers by adding minerals (especially sulfate) and cementing sediments. This hypothesis is supported by a groundwater model and by sulfates discovered in a wide area.

Opportunity Rover, scientists discovered that groundwater had repeatedly risen and deposited sulfates.[73][84][85][86][87] Later studies with instruments on board the Mars Reconnaissance Orbiter showed that the same kinds of materials existed in a large area that included Arabia.[88]

Interesting geomorphological features

Avalanches

On February 19, 2008, images obtained by the HiRISE camera on the Mars Reconnaissance Orbiter showed a spectacular avalanche, in which debris thought to be fine-grained ice, dust, and large blocks fell from a 700-metre (2,300 ft) high cliff. Evidence of the avalanche included dust clouds rising from the cliff afterwards.[89] Such geological events are theorized to be the cause of geologic patterns known as slope streaks.

  • Image of the February 19, 2008 Mars avalanche captured by the Mars Reconnaissance Orbiter.
    Image of the February 19, 2008 Mars avalanche captured by the Mars Reconnaissance Orbiter.
  • Closer shot of the avalanche.
    Closer shot of the avalanche.
  • Dust clouds rise above the 700-metre (2,300 ft) deep cliff.
    Dust clouds rise above the 700-metre (2,300 ft) deep cliff.
  • A photo with scale demonstrates the size of the avalanche.
    A photo with scale demonstrates the size of the avalanche.

Possible caves

USGS Astrogeology Science Center.[93] In 2021, scientists are applying machine-learning algorithms to extend the MGC3 database across the entire surface of Mars.[94]

It has been suggested that human explorers on Mars could use lava tubes as shelters. The caves may be the only natural structures offering protection from the micrometeoroids, UV radiation, solar flares, and high energy particles that bombard the planet's surface.[95] These features may enhance preservation of biosignatures over long periods of time and make caves an attractive astrobiology target in the search for evidence of life beyond Earth.[96][97][98]

  • A cave on Mars ("Jeanne") as seen by the Mars Reconnaissance Orbiter.
    A cave on Mars ("Jeanne") as seen by the Mars Reconnaissance Orbiter.
  • HiRISE closeup of Jeanne showing afternoon illumination of the east wall of the shaft.
    HiRISE closeup of Jeanne showing afternoon illumination of the east wall of the shaft.
  • THEMIS image of cave entrances on Mars.
    THEMIS image of cave entrances on Mars.
  • Map of 1,000+ possible cave-entrances at Tharsis Montes
    Map of 1,000+ possible cave-entrances at Tharsis Montes

Inverted relief

Some areas of Mars show inverted relief, where features that were once depressions, like streams, are now above the surface. It is believed that materials like large rocks were deposited in low-lying areas. Later, wind erosion removed much of the surface layers, but left behind the more resistant deposits. Other ways of making inverted relief might be lava flowing down a stream bed or materials being cemented by minerals dissolved in water. On Earth, materials cemented by silica are highly resistant to all kinds of erosional forces. Examples of inverted channels on Earth are found in the Cedar Mountain Formation near Green River, Utah. Inverted relief in the shape of streams are further evidence of water flowing on the Martian surface in past times.[99] Inverted relief in the form of stream channels suggests that the climate was different—much wetter—when the inverted channels were formed.

In an article published in 2010, a large group of scientists endorsed the idea of searching for life in Miyamoto Crater because of inverted stream channels and minerals that indicated the past presence of water.[100]

Images of examples of inverted relief from various parts of Mars are shown below.

Notable rocks

Notable rocks on Mars
Adirondack
(Spirit)
Barnacle Bill
(Sojourner
)
Bathurst Inlet
(Curiosity)
Big Joe
(Viking)
M
Bounce
(Opportunity)
Coronation
(Curiosity
)
El Capitan
(Opportunity)
Esperance
(Opportunity)
Goulburn
(Curiosity)
M
Home Plate
(Spirit)
Hottah
(Curiosity)
Jake Matijevic
(Curiosity)
Last Chance
(Opportunity)
Link
(Curiosity)
M
Mimi
(Spirit)
M
Pot of Gold
(Spirit)
Rocknest 3
(Curiosity)
M
Tintina
(Curiosity)
Yogi
(Sojourner)
The table above contains clickable links
Meteorite - (
)

See also

References

  1. ^ P. Zasada (2013) Generalised Geological Map of Mars, 1:140.000.000, Source Link.
  2. .
  3. ^ "World Wide Words: Areologist". World Wide Words. Retrieved October 11, 2017.
  4. ^ "The Areological Society". The Areological Society. Retrieved 2021-11-07.
  5. USGS. Retrieved July 22, 2014.{{cite web}}: CS1 maint: multiple names: authors list (link
    )
  6. New York Times
    . Retrieved July 22, 2014.
  7. USGS
    . Retrieved July 22, 2014.
  8. ^ Chang, Kenneth (30 April 2018). "Mars InSight: NASA's Journey Into the Red Planet's Deepest Mysteries". The New York Times. Retrieved 30 April 2018.
  9. ^ Chang, Kenneth (5 May 2018). "NASA's InSight Launches for Six-Month Journey to Mars". The New York Times. Retrieved 5 May 2018.
  10. ^ InSight lander completes seismometer deployment on Mars. Stephen Clark, Space Flight Now. 4 February 2019.
  11. ^ Andrews, Robin George (25 October 2023). "A Radioactive Sea of Magma Hides Under the Surface of Mars - The discovery helped to show why the red planet's core is not as large as earlier estimates had suggested it might be". The New York Times. Archived from the original on 25 October 2023. Retrieved 26 October 2023.
  12. (PDF) on 2011-07-20.
  13. ^ Carr 2006, pp. 78–79
  14. PMID 10710301
    .
  15. .
  16. .
  17. .
  18. .
  19. .
  20. .
  21. .
  22. .
  23. .
  24. .
  25. .
  26. .
  27. .
  28. .
  29. .
  30. ^ Carr, M.H (2007). Mars: Surface and Interior in Encyclopedia of the Solar System, 2nd ed., McFadden, L.-A. et al. Eds. Elsevier: San Diego, CA, p.319
  31. .
  32. ^ Boyce, J.M. (2008) The Smithsonian Book of Mars; Konecky&Konecky: Old Saybrook, CT, p. 13.
  33. ^ Carr, M.H.; Saunders, R.S.; Strom R.G. (1984). Geology of the Terrestrial Planets; NASA Scientific and Technical Information Branch: Washington DC, 1984, p. 223. http://www.lpi.usra.edu/publications/books/geologyTerraPlanets/
  34. ^ Hartmann 2003, pp. 70–73
  35. .
  36. ^ Kargel, J.S. (2004) Mars: A Warmer Wetter Planet; Springer-Praxis: London, p. 52.
  37. ^ Carr 2006, p. 95
  38. ^ Hartmann 2003, p. 316
  39. ^ Carr 2006, p. 114
  40. .
  41. .
  42. ^ Sheehan, W. (1996). The Planet Mars: A History of Observation & Discovery; University of Arizona Press: Tucson, p. 25. http://www.uapress.arizona.edu/onlinebks/mars/contents.htm Archived 2017-09-11 at the Wayback Machine.
  43. S2CID 28087958
    .
  44. ^ Carr 2006, p. 1
  45. .
  46. .
  47. .
  48. .
  49. ^ Carr 2006, pp. 24–27
  50. ^ .
  51. .
  52. ^ Hale, W.S.; Head, J.W. (1981). Lunar Planet. Sci. XII, pp. 386-388. (abstract 1135). http://www.lpi.usra.edu/meetings/lpsc1981/pdf/1135.pdf
  53. S2CID 34239136
    .
  54. ^ Walter S. Kiefer (2004). "Maximum Impact - Impact Craters in the Solar System". NASA Solar System Exploration. Archived from the original on 2006-09-29. Retrieved 2007-05-14.
  55. ^ Hartmann 2003, pp. 99–100
  56. ^ "Viking Orbiter Views Of Mars". NASA. Retrieved 2007-03-16.
  57. ^ Boyce, J.M. The Smithsonian Book of Mars; Konecky&Konecky: Old Saybrook, CT, 2008, p. 203.
  58. .
  59. ^ Nadine Barlow. "Stones, Wind and Ice". Lunar and Planetary Institute. Retrieved 2007-03-15.
  60. ^ http://hirise.lpl.eduPSP_008508_1870[permanent dead link]
  61. ^ Bleacher, J. and S. Sakimoto. Pedestal Craters, A Tool For Interpreting Geological Histories and Estimating Erosion Rates. LPSC
  62. ^ "Pedestal Craters in Utopia - Mars Odyssey Mission THEMIS". themis.asu.edu. Retrieved 29 March 2018.
  63. ^ a b Brown, Dwayne (October 30, 2012). "NASA Rover's First Soil Studies Help Fingerprint Martian Minerals". NASA. Retrieved October 31, 2012.
  64. ^ Wolpert, Stuart (August 9, 2012). "UCLA scientist discovers plate tectonics on Mars". Yin, An. UCLA. Archived from the original on August 14, 2012. Retrieved August 11, 2012.
  65. ^ "Martian Methane Reveals the Red Planet is not a Dead Planet". NASA. July 2009. Retrieved 7 December 2010.
  66. ^ "Hunting for young lava flows". Geophysical Research Letters. Red Planet. 1 June 2011. Retrieved 4 October 2013.
  67. ^ NASA News (22 June 2016), "NASA Scientists Discover Unexpected Mineral on Mars", NASA Media, retrieved 23 June 2016
  68. .
  69. ^
  70. ^ Grotzinger, J. and R. Milliken (eds.) 2012. Sedimentary Geology of Mars. SEPM
  71. S2CID 130651090
    .
  72. ^ Patrick Zasada (2013/14): Gradation of extraterrestrial fluvial sediments – related to the gravity. - Z. geol. Wiss. 41/42 (3): 167-183. Abstract
  73. ^ a b "Opportunity Rover Finds Strong Evidence Meridiani Planum Was Wet". Retrieved July 8, 2006.
  74. (2005); reprinted from Earth and Planetary Science Letters, Vol. 240, No. 1 (2005).
  75. ^ Zasada, P., 2013: Entstehung des Marsgesteins "Jake Matijevic". – Sternzeit, issue 2/2013: 98 ff. (in German language).
  76. ISSN 0037-0746
    .
  77. .
  78. .
  79. .
  80. .
  81. .
  82. .
  83. .
  84. .
  85. .
  86. .
  87. .
  88. ^ M. Wiseman, J. C. Andrews-Hanna, R. E. Arvidson3, J. F. Mustard, K. J. Zabrusky DISTRIBUTION OF HYDRATED SULFATES ACROSS ARABIA TERRA USING CRISM DATA: IMPLICATIONS FOR MARTIAN HYDROLOGY. 42nd Lunar and Planetary Science Conference (2011) 2133.pdf
  89. ^ DiscoveryChannel.ca - Mars avalanche caught on camera Archived 2012-05-12 at the Wayback Machine
  90. ^ Rincon, Paul (March 17, 2007). "'Cave entrances' spotted on Mars". BBC News.
  91. ^ Shiga, David (August 2007). "Strange Martian feature not a 'bottomless' cave after all". New Scientist. Retrieved 2010-07-01.
  92. ^ "Teen project one-ups NASA, finds hole in Mars cave". AFP. 2010-06-23. Retrieved 2010-07-01.
  93. ^ "The Caves of Mars". www.usgs.gov. Retrieved 2021-08-03.
  94. .
  95. ^ Thompson, Andrea (2009-10-26). "Mars Caves Might Protect Microbes (or Astronauts)". Space.com. Retrieved 2010-07-01.
  96. ^ Preparing for Robotic Astrobiology Missions to Lava Caves on Mars: The BRAILLE Project at Lava Beds National Monument. 42nd COSPAR Scientific Assembly. Held 14–22 July 2018, in Pasadena, California, USA. Abstract ID: F3.1-13-18.
  97. ^ BRAILLE Mars project. NASA. Accessed on 6 February 2019.
  98. ^ Martian Caves as Special Region Candidates: A simulation in ANSYS Fluent on how caves on Mars are, and what their conditions would be for being considered as special regions. Patrick Olsson. Student Thesis. Luleå University of Technology. DiVA, id: diva2:1250576. 2018.
  99. ^ "HiRISE | Inverted Channels North of Juventae Chasma (PSP_006770_1760)". Hirise.lpl.arizona.edu. Retrieved 2012-01-16.
  100. .

Bibliography

External links