Glucocorticoid receptor

Source: Wikipedia, the free encyclopedia.
NR3C1
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_008173
NM_001361209
NM_001361210
NM_001361211
NM_001361212

RefSeq (protein)

NP_001348138
NP_001348139
NP_001348140
NP_001348141
NP_032199

Location (UCSC)Chr 5: 143.28 – 143.44 MbChr 18: 39.54 – 39.65 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

The glucocorticoid receptor (GR or GCR) also known as NR3C1 (nuclear receptor subfamily 3, group C, member 1) is the receptor to which cortisol and other glucocorticoids bind.

The GR is

pleiotropic
) effects in different parts of the body.

When glucocorticoids bind to GR, its primary mechanism of action is the regulation of gene transcription.[5][6] The unbound receptor resides in the cytosol of the cell. After the receptor is bound to glucocorticoid, the receptor-glucocorticoid complex can take either of two paths. The activated GR complex up-regulates the expression of anti-inflammatory proteins in the nucleus or represses the expression of pro-inflammatory proteins in the cytosol (by preventing the translocation of other transcription factors from the cytosol into the nucleus).

In humans, the GR protein is encoded by NR3C1

chromosome 5 (5q31).[7][8]

Structure

Like the other

steroid receptors,[9] the glucocorticoid receptor is modular in structure[10]
and contains the following domains (labeled A - F):

Ligand binding and response

In the absence of hormone, the glucocorticoid receptor (GR) resides in the cytosol complexed with a variety of proteins including

FK506-binding protein 4).[11] The endogenous glucocorticoid hormone cortisol diffuses through the cell membrane into the cytoplasm and binds to the glucocorticoid receptor (GR) resulting in release of the heat shock proteins. The resulting activated form GR has two principal mechanisms of action, transactivation and transrepression,[12][13]
described below.

Transactivation

A direct mechanism of action involves

transcription. This mechanism of action is referred to as transactivation. The biological response depends on the cell type.[citation needed
]

Transrepression

In the absence of activated GR, other transcription factors such as

AP-1 is restricted only to certain cell types, and is not considered the universal mechanism for IκBα repression. [15][16]

Clinical significance

The GR is abnormal in

In

PTSD).[18] Indeed, long-standing observations such as the mood dysregulations typical of Cushing's disease demonstrate the role of corticosteroids in regulating psychologic state; recent advances have demonstrated interactions with norepinephrine and serotonin at the neural level.[19][20]

In preeclampsia (a hypertensive disorder commonly occurring in pregnant women), the level of a miRNA sequence possibly targeting this protein is elevated in the blood of the mother. Rather, the placenta elevates the level of exosomes containing this miRNA, which can result in inhibition of translation of molecule. Clinical significance of this information is not yet clarified.[21]

Agonists and antagonists

Dexamethasone and other corticosteroids are agonists, while mifepristone and ketoconazole are antagonists of the GR. Anabolic steroids also prevent cortisol from binding to the glucocorticoid receptor.

Interactions

Glucocorticoid receptor has been shown to

interact
with:

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000113580Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000024431Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. S2CID 28626145
    . [Free full text]
  6. .
  7. .
  8. .
  9. .
  10. .
  11. .
  12. .
  13. .
  14. .
  15. .
  16. .
  17. .
  18. . [Free full text]
  19. . [Free full text]
  20. .
  21. .
  22. .
  23. .
  24. .
  25. .
  26. ^ .
  27. .
  28. .
  29. .
  30. .
  31. .
  32. .
  33. .
  34. .
  35. ^ .
  36. ^ .
  37. .
  38. .
  39. .
  40. .
  41. .
  42. .
  43. .
  44. ^ .
  45. .
  46. .
  47. ^ .
  48. .
  49. .
  50. .
  51. .
  52. .
  53. .
  54. .
  55. .
  56. .
  57. .
  58. .

Further reading

External links