Group 12 element

This is a good article. Click here for more information.
Source: Wikipedia, the free encyclopedia.

Group 12 in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
group 11  boron group
IUPAC group number 12
Name by element zinc group
CAS group number
(US, pattern A-B-A)
IIB
old IUPAC number
(Europe, pattern A-B)
IIB

↓ Period
4
Image: Zinc, fragment and sublimed 99.995%
Zinc (Zn)
30 Transition metal
5
Image: Cadmium, crystal bar 99.99%
Cadmium (Cd)
48 Transition metal
6
Image: Mercury, liquid
Mercury (Hg)
80 Transition metal
7 Copernicium (Cn)
112 transition metal

Legend

primordial element
synthetic element
Atomic number color:
green=liquidblack=solid

Group 12, by modern

Roman numeral) by CAS and old IUPAC system.[note 1]

The three group 12 elements that occur naturally are zinc, cadmium and mercury. They are all widely used in electric and electronic applications, as well as in various alloys. The first two members of the group share similar properties as they are solid metals under standard conditions. Mercury is the only metal that is known to be a liquid at room temperature – as copernicium's boiling point has not yet been measured accurately enough,[note 2] it is not yet known whether it is a liquid or a gas under standard conditions. While zinc is very important in the biochemistry of living organisms, cadmium and mercury are both highly toxic. As copernicium does not occur in nature, it has to be synthesized in the laboratory.

Physical and atomic properties

Like other groups of the periodic table, the members of group 12 show patterns in its electron configuration, especially the outermost shells, which result in trends in their chemical behavior:

Z Element No. of electrons/shell
30 zinc 2, 8, 18, 2
48 cadmium 2, 8, 18, 18, 2
80 mercury 2, 8, 18, 32, 18, 2
112 copernicium 2, 8, 18, 32, 32, 18, 2 (predicted)

The group 12 elements are all soft,

ductile, and with a bluish-white color. Mercury is a liquid, heavy, silvery-white metal. It is the only common liquid metal at ordinary temperatures, and as compared to other metals, it is a poor conductor of heat, but a fair conductor of electricity.[12]

The table below is a summary of the key physical properties of the group 12 elements. The data for copernicium is based on relativistic density-functional theory simulations.[13]

Properties of the group 12 elements
Name Zinc Cadmium Mercury Copernicium
Melting point 693 K (420 °C) 594 K (321 °C) 234 K (−39 °C) 283±11 K[13] (10 °C)
Boiling point 1180 K (907 °C) 1040 K (767 °C) 630 K (357 °C) 340±10 K[13] (60 °C)
Density 7.14 g·cm−3 8.65 g·cm−3 13.534 g·cm−3 14.0 g·cm−3 [13]
Appearance silvery bluish-gray silver-gray silvery ?
Atomic radius 135 pm 155 pm 150 pm ? 147 pm

Zinc is somewhat less dense than

metallic bonds.[18][19]

Zinc, cadmium and mercury form a large range of

high-pressure sodium lamps. Mercury readily combines with aluminium to form a mercury-aluminium amalgam when the two pure metals come into contact. Since the amalgam reacts with air to give aluminium oxide, small amounts of mercury corrode aluminium. For this reason, mercury is not allowed aboard an aircraft under most circumstances because of the risk of it forming an amalgam with exposed aluminium parts in the aircraft.[22]

Chemistry

Most of the chemistry has been observed only for the first three members of the group 12. The chemistry of copernicium is not well established and therefore the rest of the section deals only with zinc, cadmium and mercury.

Periodic trends

All elements in this group are

.

Zinc and cadmium are

diamagnetic species.[24] Cadmium can also form species such as [Cd2Cl6]4− in which the metal's oxidation state is +1. Just as with mercury, the formation of a metal-metal bond results in a diamagnetic compound in which there are no unpaired electrons; thus, making the species very reactive. Zinc(I) is known mostly in the gas phase, in such compounds as linear Zn2Cl2, analogous to calomel. In the solid phase, the rather exotic compound decamethyldizincocene
(Cp*Zn–ZnCp*) is known.

Classification

The elements in group 12 are usually considered to be

IUPAC's definition of transition metal as an element whose atom has an incomplete d sub-shell, or which can give rise to cations with an incomplete d sub-shell,[26] zinc and cadmium are not transition metals, while mercury is. This is because only mercury is known to have a compound where its oxidation state is higher than +2, in mercury(IV) fluoride (though its existence is disputed, as later experiments trying to confirm its synthesis could not find evidence of HgF4).[27][28] However, this classification is based on one highly atypical compound seen at non-equilibrium conditions and is at odds to mercury's more typical chemistry, and Jensen has suggested that it would be better to regard mercury as not being a transition metal.[29]

Relationship with the alkaline earth metals

Although group 12 lies in the

periodic trends down group 2 from beryllium to radium (similar to that of the alkali metals) are not as smooth when going down from beryllium to mercury (which is more similar to that of the p-block main groups) due to the d-block and lanthanide contractions. It is also the d-block and lanthanide contractions that give mercury many of its distinctive properties.[29]

Comparison of the properties of the alkaline earth metals and the group 12 elements (predictions for copernicium)[29]
Name Beryllium Magnesium Calcium Strontium Barium Radium
Valence electron configuration 2s2 3s2 4s2 5s2 6s2 7s2
Core electron configuration [He] [Ne] [Ar] [Kr] [Xe] [Rn]
Oxidation states[note 3] +2, +1 +2, +1 +2, +1 +2, +1 +2 +2
Melting point 1560 K (1287 °C) 923 K (650 °C) 1115 K (842 °C) 1050 K (777 °C) 1000 K (727 °C) 973 K (700 °C)
Boiling point 2742 K (2469 °C) 1363 K (1090 °C) 1757 K (1484 °C) 1655 K (1382 °C) 2170 K (1897 °C) 2010 K (1737 °C)
Appearance white-gray metallic shiny gray metallic dull silver-gray silvery white metallic silvery gray silvery white metallic
Density 1.85 g·cm−3 1.738 g·cm−3 1.55 g·cm−3 2.64 g·cm−3 3.51 g·cm−3 5.5 g·cm−3
Pauling electronegativity 1.57 1.31 1.00 0.95 0.89 0.9
Atomic radius 105 pm 150 pm 180 pm 200 pm 215 pm 215 pm
Crystal ionic radius 59 pm 86 pm 114 pm 132 pm 149 pm 162 pm
Flame test color white[29] brilliant white[30] brick-red[30] crimson[30] apple green[30] crimson red[note 4]
Organometallic chemistry good good poor very poor very poor extremely poor
Hydroxide
amphoteric
basic basic strongly basic strongly basic strongly basic
Oxide amphoteric strongly basic strongly basic strongly basic strongly basic strongly basic
Name Beryllium Magnesium Zinc Cadmium Mercury Copernicium
Valence electron configuration 2s2 3s2 4s2 5s2 6s2 ? 7s2
Core electron configuration [He] [Ne] [Ar]3d10 [Kr]4d10 [Xe]4f145d10 ? [Rn]5f146d10
Oxidation states[note 3] +2, +1 +2, +1 +2, +1 +2, +1 +2, +1 ? +4, +2, +1, 0[32][33][34]
Melting point 1560 K (1287 °C) 923 K (650 °C) 693 K (420 °C) 594 K (321 °C) 234 K (−39 °C) 283±11 K (10 °C)
Boiling point 2742 K (2469 °C) 1363 K (1090 °C) 1180 K (907 °C) 1040 K (767 °C) 630 K (357 °C) 340±10 K (60 °C)
Appearance white-gray metallic shiny gray metallic silvery bluish-gray metallic silver-gray silvery ?
Density 1.85 g·cm−3 1.738 g·cm−3 7.14 g·cm−3 8.65 g·cm−3 13.534 g·cm−3 14.0 g·cm−3
Pauling electronegativity 1.57 1.31 1.65 1.69 2.00 ?
Atomic radius 105 pm 150 pm 135 pm 155 pm 150 pm ? 147 pm[33]
Crystal ionic radius 59 pm 86 pm 88 pm 109 pm 116 pm ? 75 pm[33]
Flame test color white brilliant white bluish-green[note 5] ? ? ?
Organometallic chemistry good good good good good ?
Hydroxide amphoteric basic amphoteric weakly basic ? ?
Oxide amphoteric strongly basic amphoteric mildly basic mildly basic ?

Compounds

All three metal ions form many tetrahedral species, such as MCl2−
4
. Both zinc and cadmium can also form octahedral complexes such as the aqua ions [M(H2O)6]2+ which are present in aqueous solutions of salts of these metals.[35] Covalent character is achieved by using the s and p orbitals. Mercury, however, rarely exceeds a coordination number of four. Coordination numbers of 2, 3, 5, 7 and 8 are also known.

History

The elements of group 12 have been found throughout history, being used since ancient times to being discovered in laboratories. The group itself has not acquired a trivial name, but it has been called group IIB in the past.

Zinc

Zinc has been found being used in impure forms in ancient times as well as in alloys such as brass that have been found to be over 2000 years old.[36][37] Zinc was distinctly recognized as a metal under the designation of Fasada in the medical Lexicon ascribed to the Hindu king Madanapala (of Taka dynasty) and written about the year 1374.[38] The metal was also of use to alchemists.[39] The name of the metal was first documented in the 16th century,[40][41] and is probably derived from the German zinke for the needle-like appearance of metallic crystals.[42]

Alchemical symbol for the element zinc

The isolation of metallic zinc in the West may have been achieved independently by several people in the 17th century.

electrical batteries, galvanization and cathodic protection.[45][46] In 1799, Galvani's friend, Alessandro Volta, invented the Voltaic pile.[45] The biological importance of zinc was not discovered until 1940 when carbonic anhydrase, an enzyme that scrubs carbon dioxide from blood, was shown to have zinc in its active site.[47]

Cadmium

In 1817, cadmium was discovered in Germany as an impurity in

Thebes.[49] Stromeyer eventually isolated cadmium metal by roasting and reduction of the sulfide.[50][51][52]

In 1927, the

Mercury

The symbol for the planet Mercury (☿) has been used since ancient times to represent the element.

Mercury has been found in Egyptian tombs which have been dated back to 1500 BC,[56] where mercury was used in cosmetics. It was also used by the ancient Chinese who believed it would improve and prolong health.[57] By 500 BC mercury was used to make amalgams (Medieval Latin amalgama, "alloy of mercury") with other metals.[58] Alchemists thought of mercury as the First Matter from which all metals were formed. They believed that different metals could be produced by varying the quality and quantity of sulfur contained within the mercury. The purest of these was gold, and mercury was called for in attempts at the transmutation of base (or impure) metals into gold, which was the goal of many alchemists.[59]

Hg is the modern chemical symbol for mercury. It comes from hydrargyrum, a Latinized form of the Greek word Ύδραργυρος (hydrargyros), which is a compound word meaning "water-silver" (hydr- = water, argyros = silver) — since it is liquid like water and shiny like silver. The element was named after the Roman god Mercury, known for speed and mobility. It is associated with the planet Mercury; the astrological symbol for the planet is also one of the alchemical symbols for the metal.[60] Mercury is the only metal for which the alchemical planetary name became the common name.[59]

Copernicium

The heaviest known group 12 element, copernicium, was

Gesellschaft für Schwerionenforschung (GSI) in Darmstadt, Germany, by Sigurd Hofmann, Victor Ninov et al.[61] It was then officially named by the International Union of Pure and Applied Chemistry (IUPAC) after Nicolaus Copernicus on February 19, 2010, the 537th anniversary of Copernicus' birth.[62]

Occurrence

Like in most other

parts per million (ppm) the most abundant in the group while cadmium with 0.1 ppm and mercury with 0.08 ppm are orders of magnitude less abundant.[63] Copernicium, as a synthetic element with a half-life
of a few minutes, may only be present in the laboratories where it was produced.

A black shiny lump of solid with uneven surface.
Sphalerite (ZnS), an important zinc ore

Group 12 metals are

Vilyuy River basin in Siberia.[67] Although mercury is an extremely rare element in the Earth's crust,[68] because it does not blend geochemically with those elements that constitute the majority of the crustal mass, mercury ores can be highly concentrated considering the element's abundance in ordinary rock. The richest mercury ores contain up to 2.5% mercury by mass, and even the leanest concentrated deposits are at least 0.1% mercury (12,000 times average crustal abundance). It is found either as a native metal (rare) or in cinnabar (HgS), corderoite, livingstonite and other minerals, with cinnabar being the most common ore.[69]

While mercury and zinc minerals are found in large enough quantities to be mined, cadmium is too similar to zinc and therefore is always present in small quantities in zinc ores from where it is recovered. Identified world zinc resources total about 1.9 billion tonnes.[70] Large deposits are in Australia, Canada and the United States with the largest reserves in Iran.[64][71][72] At the current rate of consumption, these reserves are estimated to be depleted sometime between 2027 and 2055.[73][74] About 346 million tonnes have been extracted throughout history to 2002, and one estimate found that about 109 million tonnes of that remains in use.[75] In 2005, China was the top producer of mercury with almost two-thirds global share followed by Kyrgyzstan.[76] Several other countries are believed to have unrecorded production of mercury from copper electrowinning processes and by recovery from effluents. Because of the high toxicity of mercury, both the mining of cinnabar and refining for mercury are hazardous and historic causes of mercury poisoning.[77]

Production

Zinc is the fourth most common metal in use, trailing only iron, aluminium, and copper with an annual production of about 10 million tonnes.[78] Worldwide, 95% of the zinc is mined from sulfidic ore deposits, in which sphalerite (ZnS) is nearly always mixed with the sulfides of copper, lead and iron. Zinc metal is produced using extractive metallurgy.[79] Roasting converts the zinc sulfide concentrate produced during processing to zinc oxide:[80] For further processing two basic methods are used: pyrometallurgy or electrowinning. Pyrometallurgy processing reduces zinc oxide with carbon or carbon monoxide at 950 °C (1,740 °F) into the metal, which is distilled as zinc vapor.[81] The zinc vapor is collected in a condenser.[80] Electrowinning processing leaches zinc from the ore concentrate by sulfuric acid:[82] After this step electrolysis is used to produce zinc metal.[80]

Cadmium is a common impurity in zinc ores, and it is most isolated during the production of zinc. Some zinc ores concentrates from sulfidic zinc ores contain up to 1.4% of cadmium.

precipitated out of the electrolysis solution.[84]

The richest mercury ores contain up to 2.5% mercury by mass, and even the leanest concentrated deposits are at least 0.1% mercury, with cinnabar (HgS) being the most common ore in the deposits.[85] Mercury is extracted by heating cinnabar in a current of air and condensing the vapor.[86]

fusion reactions. Whereas most of the isotopes of copernicium can be synthesized directly this way, some heavier ones have only been observed as decay products of elements with higher atomic numbers.[87] The first fusion reaction to produce copernicium was performed by GSI in 1996, who reported the detection of two decay chains of copernicium-277 (though one was later retracted, as it had been based on data fabricated by Victor Ninov):[61]

70
30
Zn
277
112
Cn
+
n

Applications

Due to the physical similarities which they share, the group 12 elements can be found in many common situations. Zinc and cadmium are commonly used as

chromate salts.[90] Group 12 elements are also used in electrochemistry as they may act as an alternative to the standard hydrogen electrode in addition to being a secondary reference electrode.[91]

In the US, zinc is used predominantly for

sacrificial anode in cathodic protection (CP). For example, cathodic protection of a buried pipeline can be achieved by connecting anodes made from zinc to the pipe.[93] Zinc acts as the anode (negative terminus) by slowly corroding away as it passes electric current to the steel pipeline.[93][note 6] Zinc is also used to cathodically protect metals that are exposed to sea water from corrosion.[94][95]
Zinc is also used as an anode material for batteries such as in zinc–carbon batteries[96][97] or zinc–air battery/fuel cells.[98][99][100] A widely used alloy which contains zinc is brass, in which copper is alloyed with anywhere from 3% to 45% zinc, depending upon the type of brass.
corrosion resistance.[93] These properties make it useful in communication equipment, hardware, musical instruments, and water valves.[93] Other widely used alloys that contain zinc include nickel silver, typewriter metal, soft and aluminium solder, and commercial bronze.[9] Alloys of primarily zinc with small amounts of copper, aluminium, and magnesium are useful in die casting as well as spin casting, especially in the automotive, electrical, and hardware industries.[9] These alloys are marketed under the name Zamak.[101] Roughly one quarter of all zinc output, in the United States (2009), is consumed in the form of zinc compounds, a variety of which are used industrially.[92]

Cadmium has many common industrial uses as it is a key component in battery production, is present in

nickel-cadmium batteries. The European Union banned the use of cadmium in electronics in 2004 with several exceptions but reduced the allowed content of cadmium in electronics to 0.002%.[103] Cadmium electroplating, consuming 6% of the global production, can be found in the aircraft industry due to the ability to resist corrosion when applied to steel components.[20]

Mercury is used primarily for the manufacture of industrial chemicals or for electrical and electronic applications. It is used in some thermometers, especially ones which are used to measure high temperatures. A still increasing amount is used as gaseous mercury in

Copernicium has no use other than research due to its very high radioactivity.

Biological role and toxicity

The group 12 elements have multiple effects on biological organisms as cadmium and mercury are toxic while zinc is required by most plants and animals in trace amounts.

Zinc is an essential

Recommended Dietary Allowance (RDA) is 8 mg/day for women and 11 mg/day for men.[117] Harmful excessive supplementation may be a problem and should probably not exceed 20 mg/day in healthy people,[118] although the U.S. National Research Council set a Tolerable Upper Intake of 40 mg/day.[119]

Mercury and cadmium are toxic and may cause environmental damage if they enter rivers or rain water. This may result in contaminated crops[120] as well as the bioaccumulation of mercury in a food chain leading to an increase in illnesses caused by mercury and cadmium poisoning.[121]

Notes

  1. ^ The name volatile metals for group 12 has occasionally been used,[6] although this much more commonly refers to any metal having a high volatility.
  2. ^ 340±10 K predicted, 357+112
    −108
     K
    experimentally[7]
  3. ^
    list of oxidation states of the elements
    . Oxidation states in bold are common.
  4. ^ The color of the flame test of pure radium has never been observed; the crimson red color is an extrapolation from the flame test color of its compounds.[31]
  5. ^ Sometimes reported as white.[29]
  6. ^ Electric current will naturally flow between zinc and steel but in some circumstances inert anodes are used with an external DC source.

References

  1. S2CID 96704008
    . Retrieved 24 March 2012.
  2. ^ a b Greenwood & Earnshaw 1997.
  3. ^ Cotton et al. 1999.
  4. .
  5. .
  6. .
  7. .
  8. ^ a b "Zinc Metal Properties". American Galvanizers Association. 2008. Archived from the original on February 21, 2009. Retrieved 2009-02-15.
  9. ^ .
  10. ^ .
  11. ^ a b Ingalls, Walter Renton (1902). Production and Properties of Zinc: A Treatise on the Occurrence and Distribution of Zinc Ore, the Commercial and Technical Conditions Affecting the Production of the Spelter, Its Chemical and Physical Properties and Uses in the Arts, Together with a Historical and Statistical Review of the Industry. The Engineering and Mining Journal. pp. 142–6.
  12. .
  13. ^ .
  14. ^ a b Lehto 1968, p. 826.
  15. ^ Scoffern, John (1861). The Useful Metals and Their Alloys. Houlston and Wright. pp. 591–603. Retrieved 2009-04-06.
  16. .
  17. ^ "Case Studies in Environmental Medicine (CSEM) Cadmium". Agency for Toxic Substances and Disease Registry. Archived from the original on February 3, 2011. Retrieved May 30, 2011.
  18. .
  19. ^ "Why is mercury a liquid at STP?". Retrieved 2009-07-07.
  20. ^ .
  21. .
  22. .
  23. ^ a b c Moss, Alex (2003). "Descriptive P-block Notes" (PDF). Alchemyst Online. Retrieved June 2, 2011.
  24. .
  25. .
  26. ^ Elusive Hg(IV) species has been synthesized under cryogenic conditions
  27. .
  28. ^ (PDF) on 2010-06-11. Retrieved 2012-05-06.
  29. ^ a b c d Royal Society of Chemistry. "Visual Elements: Group 2–The Alkaline Earth Metals". Visual Elements. Royal Society of Chemistry. Retrieved 13 January 2012.
  30. ^ Kirby, H. W.; Salutsky, Murrell L. (1964). The Radiochemistry of Radium. National Academies Press.[permanent dead link]
  31. ^ H. W. Gäggeler (2007). "Gas Phase Chemistry of Superheavy Elements" (PDF). Paul Scherrer Institute. pp. 26–28. Archived from the original (PDF) on 2012-02-20.
  32. ^ .
  33. ISBN 978-3-540-07109-9. Retrieved 4 October 2013. {{cite book}}: |journal= ignored (help
    )
  34. .
  35. ^ Weeks 1933, p. 20.
  36. ^ Greenwood & Earnshaw 1997, p. 1201.
  37. ^ Ray, Prafulla Chandra (1903). A History of Hindu Chemistry from the Earliest Times to the Middle of the Sixteenth Century, A.D.: With Sanskrit Texts, Variants, Translation and Illustrations. Vol. 1 (2nd ed.). The Bengal Chemical & Pharmaceutical Works. pp. 157–158. (public domain text)
  38. ^ Arny, Henry Vinecome (1917). Principles of Pharmacy (2nd ed.). W. B. Saunders company. p. 483.
  39. ^ Habashi, Fathi. "Discovering the 8th Metal" (PDF). International Zinc Association (IZA). Archived from the original (PDF) on 2009-03-04. Retrieved 2008-12-13.
  40. .
  41. .
  42. ^ Emsley 2001, p. 502.
  43. ^ Weeks 1933, p. 21.
  44. ^ .
  45. ^ "Galvanic Cell". The New International Encyclopaedia. Dodd, Mead and Company. 1903. p. 80.
  46. ^ Cotton et al. 1999, p. 626.
  47. ^ "Cadmium". Kirk-Othmer Encyclopedia of Chemical Technology. Vol. 5 (4th ed.). New York: John Wiley & Sons. 1994.
  48. .
  49. ^ Waterston, William; Burton, J. H (1844). Cyclopædia of commerce, mercantile law, finance, commercial geography and navigation. p. 122.
  50. ^ Rowbotham, Thomas Leeson (1850). The art of landscape painting in water colours, by T. and T. L. Rowbotham. p. 10.
  51. .
  52. .
  53. .
  54. .
  55. Environment Canada, Federal Government of Canada. 2004. Archived from the original
    on 2007-01-15. Retrieved 2008-03-27.
  56. .
  57. .
  58. ^ ]
  59. .
  60. ^ .
  61. .
  62. .
  63. ^ a b Greenwood & Earnshaw 1997, p. 1202.
  64. ^ Plachy, Jozef. "Annual Average Cadmium Price" (PDF). USGS. Retrieved June 16, 2010.
  65. .
  66. ^ Fleischer, Michael (1980). "New Mineral Names" (PDF). American Mineralogist. 65: 1065–1070.
  67. .
  68. .
  69. ^ Tolcin, A. C. (2011). "Mineral Commodity Summaries 2009: Zinc" (PDF). United States Geological Survey. Retrieved 2011-06-06.
  70. ^ "Country Partnership Strategy—Iran: 2011–12". ECO Trade and development bank. Archived from the original on 2011-10-26. Retrieved 2011-06-06.
  71. ^ "IRAN – a growing market with enormous potential". IMRG. July 5, 2010. Archived from the original on 2013-02-17. Retrieved 2010-03-03.
  72. .
  73. ^ "Augsberg University Calculate When Our Materials Run Out". IDTechEx. 2007-06-04. Retrieved 2008-12-09.
  74. PMID 16432205
    .
  75. ^ World Mineral Production (Report). London: British Geological Survey, NERC. 2007.
  76. ^ About the Mercury Rule Archived 2012-05-01 at the Wayback Machine
  77. ^ "Zinc: World Mine Production (zinc content of concentrate) by Country" (PDF). 2006 Minerals Yearbook: Zinc: Table 15. February 2008. Retrieved 2009-01-19.
  78. .
  79. ^ .
  80. .
  81. .
  82. ^ National Research Council, Panel on Cadmium, Committee on Technical Aspects of Critical and Strategic Material (1969). Trends in Usage of Cadmium: Report. National Research Council, National Academy of Sciences-National Academy of Engineering. pp. 1–3.
  83. .
  84. .
  85. .
  86. .
  87. ^ Stwertka 1998, p. [page needed].
  88. ^ Emsley 2001, pp. 499–505.
  89. ^ a b Smith, C.J.E.; Higgs, M.S.; Baldwin, K.R. (April 20, 1999). "Advances to Protective Coatings and their Application to Ageing Aircraft" (PDF). RTO MP-25. Archived from the original (PDF) on March 4, 2016. Retrieved May 29, 2011.
  90. .
  91. ^ a b "Zinc: World Mine Production (zinc content of concentrate) by Country" (PDF). 2009 Minerals Yearbook: Zinc. Washington, D.C.: United States Geological Survey. February 2010. Retrieved 2010-06-06.
  92. ^ a b c d e Lehto 1968, p. 829.
  93. S2CID 135744939
    .
  94. ^ Stwertka 1998, p. 99.
  95. . Retrieved 2008-10-08.
  96. .
  97. .
  98. ^ Whartman, Jonathan; Brown, Ian. "Zinc Air Battery-Battery Hybrid for Powering Electric Scooters and Electric Buses" (PDF). The 15th International Electric Vehicle Symposium. Archived from the original (PDF) on 2006-03-12. Retrieved 2008-10-08.
  99. OSTI 82465
    .
  100. ^ "Diecasting Alloys". Maybrook, NY: Eastern Alloys. Retrieved 2009-01-19.
  101. ]
  102. ^ "Battery collection; recycling, nature protected". European Union. Retrieved November 4, 2008.
  103. .
  104. ^ "Mercury Reduction Act of 2003". United States. Congress. Senate. Committee on Environment and Public Works. Retrieved 2009-06-06.
  105. S2CID 22732411
    .
  106. ^ FDA. "Thimerosal in Vaccines". Food and Drug Administration. Retrieved October 25, 2006.
  107. ISSN 1076-2906
    .
  108. ^ Leopold, B. R. (2002). "Chapter 3: Manufacturing Processes Involving Mercury. Use and Release of Mercury in the United States" (PDF). National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio. Archived from the original (PDF) on June 21, 2007. Retrieved May 1, 2007.
  109. ^ "Chlorine Online Diagram of mercury cell process". Euro Chlor. Archived from the original on September 18, 2011. Retrieved 2012-04-09.
  110. ^
    PMID 17286818
    .
  111. .
  112. .
  113. .
  114. .
  115. .
  116. . Retrieved 23 June 2011.
  117. .
  118. PMID 25057538. Retrieved 2010-03-30. {{cite book}}: |work= ignored (help
    )
  119. .
  120. .

Bibliography