HIV-1 protease

Source: Wikipedia, the free encyclopedia.
HIV-1 Protease (Retropepsin)
ExPASy
NiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO
Search
PMCarticles
PubMedarticles
NCBIproteins

HIV-1 protease or PR is a

virion, the infectious form of a virus outside of the host cell.[4] Without effective HIV-1 PR, HIV virions remain uninfectious.[5][6]

Structure

HIV-1 protease labelled according to its resemblance to an English Bulldog or a fat cat.[7] The blue and cyan-green ribbons depict the peptide backbone of a wild-type (1D4S​) and a mutant (1KZK​) structure, respectively.

Mature HIV protease exists as a 22 kDa

homodimer, with each subunit made up of 99 amino acids.[1] A single active site lies between the identical subunits and has the characteristic Asp-Thr-Gly (Asp25, Thr26 and Gly27) catalytic triad sequence common to aspartic proteases.[8] As HIV-1 PR can only function as a dimer, the mature protease contains two Asp25 amino acids, one from each monomer, that act in conjunction with each other as the catalytic residues.[9] Additionally, HIV protease has two molecular "flaps" which move a distance of up to 7 Å when the enzyme becomes associated with a substrate.[10] This can be visualized with animations of the flaps opening and closing
.

Biosynthesis

The Gag-Pol region containing the protease gene flanked by p6pol at the N-terminus and reverse transcriptase at the C-terminus. "Hxb2genome"

Precursor

The Gag-Pol polyprotein, which contains premature coding proteins, including HIV-1 PR.[9] PR is located between the reverse transcriptase (which is at the C-terminus of PR) and the p6pol (which is at the N-terminus of PR) of the transframe region (TFR).[11]

In order for this precursor to become a functional protein, each monomer must associate with another HIV-1 PR monomer to form a functional catalytic active site by each contributing the Asp25 of their respective catalytic triads.[9]

Synthesis Mechanism

When viral HIV-RNA enters the cell, it is accompanied by a reverse transcriptase, an integrase, and a mature HIV-1 PR. The reverse transcriptase converts viral RNA into DNA, facilitating the integrase's role in incorporating viral genetic information with the host cell DNA.[2] The viral DNA can either remain dormant in the nucleus or be transcribed into mRNA and translated by the host cell into the Gag-Pol polyprotein, which would then be cleaved into individual functional proteins (including a newly synthesized HIV-1 PR) by the mature HIV-1 PR.[9]

The HIV-1 PR precursor catalyzes its own production by facilitating its cleavage from the Gag-Pol polyprotein in a mechanism known as auto-processing. Auto-processing of HIV-1 PR is characterized by two sequential steps: (1) the intramolecular cleavage of the N-terminus at the p6pol-protease cleavage site, which serves to finalize PR processing and increase enzymatic activity with the newly formed PR-reverse transcriptase intermediate, and (2) the intermolecular cleavage of the C-terminus at the protease-reverse transcriptase cleavage site, leading to the assembly of two PR subunits into mature dimers.

substrate (magenta). (PDB: 1KJF​)
Complexed with inhibitor BEA369 (depicted as a sticks with carbon in white, nitrogen in blue, oxygen in red). (PDB: 1EBY
​)