Habitat fragmentation
![]() | This article's lead section may be too short to adequately summarize the key points. of all important aspects of the article. (October 2021) |



Habitat fragmentation describes the emergence of discontinuities (fragmentation) in an organism's preferred
Definition
The term habitat fragmentation includes five discrete phenomena:
- Reduction in the total area of the habitat
- Decrease of the interior: edgeratio
- Isolation of one habitat fragment from other areas of habitat
- Breaking up of one patch of habitat into several smaller patches
- Decrease in the average size of each patch of habitat
"fragmentation ... not only causes loss of the amount of habitat but by creating small, isolated patches it also changes the properties of the remaining habitat" (van den Berg et al. 2001)[failed verification]. Habitat fragmentation is the landscape level of the phenomenon, and patch level process. Thus meaning, it covers; the patch areas, edge effects, and patch shape complexity.[5]
In scientific literature, there is some debate whether the term "habitat fragmentation" applies in cases of
Furthermore, habitat fragmentation is considered as an invasive threat to biodiversity, due to its implications of affecting large number of species than biological invasions, overexploitation, or pollution.[6]
Additionally, the effects of habitat fragmentation damage the ability for species, such as
Causes
Natural causes
Evidence of habitat destruction through natural processes such as volcanism, fire, and climate change is found in the fossil record.[2][failed verification] For example, habitat fragmentation of tropical rainforests in Euramerica 300 million years ago led to a great loss of amphibian diversity, but simultaneously the drier climate spurred on a burst of diversity among reptiles.[2]
Human causes
Habitat fragmentation is frequently caused by humans when
Endogenous vs. exogenous
There are two types of processes that can lead to habitat fragmentation. There are exogenous processes and endogenous processes. Endogenous is a process that develops as a part of species biology so they typically include changes in biology, behavior, and interactions within or between species. Endogenous threats can result in changes to breeding patterns or migration patterns and are often triggered by exogenous processes. Exogenous processes are independent of species biology and can include habitat degradation, habitat subdivision or habitat isolation. These processes can have a substantial impact on endogenous processes by fundamentally altering species behavior. Habitat subdivision or isolation can lead to changes in dispersal or movement of species including changes to seasonal migration. These changes can lead to a decrease in a density of species, increased competition or even increased predation.[8]
Implications
Habitat and biodiversity loss
One of the major ways that habitat fragmentation affects
Habitat loss, which can occur through the process of habitat fragmentation, is considered to be the greatest threat to species.
Area is the primary determinant of the number of species in a fragment[16] and the relative contributions of demographic and genetic processes to the risk of global population extinction depend on habitat configuration, stochastic environmental variation and species features.[17] Minor fluctuations in climate, resources, or other factors that would be unremarkable and quickly corrected in large populations can be catastrophic in small, isolated populations. Thus fragmentation of habitat is an important cause of species extinction.[16] Population dynamics of subdivided populations tend to vary asynchronously. In an unfragmented landscape a declining population can be "rescued" by immigration from a nearby expanding population. In fragmented landscapes, the distance between fragments may prevent this from happening. Additionally, unoccupied fragments of habitat that are separated from a source of immigrants by some barrier are less likely to be repopulated than adjoining fragments. Even small species such as the Columbia spotted frog are reliant on the rescue effect. Studies showed 25% of juveniles travel a distance over 200m compared to 4% of adults. Of these, 95% remain in their new locale, demonstrating that this journey is necessary for survival.[18]
Additionally, habitat fragmentation leads to
Much of the remaining terrestrial
Informed conservation
Habitat fragmentation is often a cause of species becoming
One solution to the problem of habitat fragmentation is to link the fragments by preserving or planting
Due to the continuous expansion of urban landscapes, current research is looking at green roofs being possible vectors of habitat corridors. A recent study has found that green roofs are beneficial in connecting the habitats of arthropods, specifically bees and weevils.[26]
Another mitigation measure is the enlargement of small remnants to increase the amount of interior habitat. This may be impractical since developed land is often more expensive and could require significant time and effort to restore.
The best solution is generally dependent on the particular species or ecosystem that is being considered. More mobile species, like most birds, do not need connected habitat while some smaller animals, like rodents, may be more exposed to predation in open land. These questions generally fall under the headings of
Genetic risks
As the remaining habitat patches are smaller, they tend to support smaller populations of fewer species.[27] Small populations are at an increased risk of a variety of genetic consequences that influence their long-term survival.[28] Remnant populations often contain only a subset of the genetic diversity found in the previously continuous habitat. In these cases, processes that act upon underlying genetic diversity, such as adaptation, have a smaller pool of fitness-maintaining alleles to survive in the face of environmental change. However, in some scenarios, where subsets of genetic diversity are partitioned among multiple habitat fragments, almost all original genetic diversity can be maintained despite each individual fragment displaying a reduced subset of diversity.[29][30]
Gene Flow and Inbreeding
Gene flow occurs when individuals of the same species exchange genetic information through reproduction. Populations can maintain genetic diversity through migration. When a habitat becomes fragmented and reduced in area, gene flow and migration are typically reduced. Fewer individuals will migrate into the remaining fragments, and small disconnected populations that may have once been part of a single large population will become reproductively isolated. Scientific evidence that gene flow is reduced due to fragmentation depends on the study species. While trees that have long-range pollination and dispersal mechanisms may not experience reduced gene flow following fragmentation,[31] most species are at risk of reduced gene flow following habitat fragmentation.[10]
Reduced gene flow, and reproductive isolation can result in
Genetic drift
Small populations are more susceptible to genetic drift. Genetic drift is random changes to the genetic makeup of populations and leads to reductions in genetic diversity. The smaller the population is, the more likely genetic drift will be a driving force of evolution rather than natural selection. Because genetic drift is a random process, it does not allow species to become more adapted to their environment. Habitat fragmentation is associated with increases to genetic drift in small populations which can have negative consequences for the genetic diversity of the populations.[32] However, research suggests that some tree species may be resilient to the negative consequences of genetic drift until population size is as small as ten individuals or less.[29]
Genetic consequences of habitat fragmentation for plant populations
Habitat fragmentation decreases the size and increases plant populations' spatial isolation. With genetic variation and increased methods of inter-population genetic divergence due to increased effects of random genetic drift, elevating inbreeding and reducing gene flow within plant species. While genetic variation may decrease with remnant population size, not all fragmentation events lead to genetic losses and different types of genetic variation. Rarely, fragmentation can also increase gene flow among remnant populations, breaking down local genetic structure.[35]
Adaptation
In order for populations to evolve in response to natural selection, they must be large enough that natural selection is a stronger evolutionary force than genetic drift. Recent studies on the impacts of habitat fragmentation on adaptation in some plant species have suggested that organisms in fragmented landscapes may be able to adapt to fragmentation.[36][37] However, there are also many cases where fragmentation reduces adaptation capacity because of small population size.[38]
Examples of impacted species
Some species that have experienced genetic consequences due to habitat fragmentation are listed below:
- Fagus sylvatica[40]
- Betula nana[29]
- Rhinella ornata[41]
- Ochotona princeps[42]
- Uta stansburiana[43]
- Plestiodon skiltonianus[43]
- Sceloporus occidentalis[43]
- Chamaea fasciata[43]
Effect on animal behaviours
Although the way habitat fragmentation affects the genetics and extinction rates of species has been heavily studied, fragmentation has also been shown to affect species' behaviours and cultures as well. This is important because social interactions can determine and have an effect on a species' fitness and survival. Habitat fragmentation alters the resources available and the structure of habitats, as a result, alters the behaviours of species and the dynamics between differing species. Behaviours affected can be within a species such as reproduction, mating, foraging, species dispersal, communication and movement patterns or can be behaviours between species such as predator-prey relationships.[44] In addition, when animals happen to venture into unknown areas in between fragmented forests or landscapes, they can supposedly come into contact with humans which puts them at a great risk and further decreases their chances of survival.[6]
Predation behaviours
Habitat fragmentation due to anthropogenic activities has been shown to greatly affect the predator-prey dynamics of many species by altering the number of species and the members of those species.[44] This affects the natural predator-prey relationships between animals in a given community [44] and forces them to alter their behaviours and interactions, therefore resetting the so-called "behavioral space race".[45] The way in which fragmentation changes and re-shapes these interactions can occur in many different forms. Most prey species have patches of land that are a refuge from their predators, allowing them the safety to reproduce and raise their young. Human introduced structures such as roads and pipelines alter these areas by facilitating predator activity in these refuges, increasing predator-prey overlap.[45] The opposite could also occur in the favour of prey, increasing prey refuge and subsequently decreasing predation rates. Fragmentation may also increase predator abundance or predator efficiency and therefore increase predation rates in this manner.[45] Several other factors can also increase or decrease the extent to which the shifting predator-prey dynamics affect certain species, including how diverse a predators diet is and how flexible habitat requirements are for predators and prey.[44] Depending on which species are affected and these other factors, fragmentation and its effects on predator-prey dynamics may contribute to species extinction.[44] In response to these new environmental pressures, new adaptive behaviours may be developed. Prey species may adapt to increased risk of predation with strategies such as altering mating tactics or changing behaviours and activities related to food and foraging.[44]
Boreal woodland caribous
In the boreal woodland caribous of British Columbia, the effects of fragmentation are demonstrated. The species refuge area is peatland bog which has been interrupted by linear features such as roads and pipelines.[46] These features have allowed their natural predators, the wolf, and the black bear to more efficiently travel over landscapes and between patches of land.[46] Since their predators can more easily access the caribous' refuge, the females of the species attempt to avoid the area, affecting their reproductive behaviours and offspring produced.[46]
Communication behaviours
Fragmentation affecting the communication behaviours of birds has been well studied in Dupont's Lark. The Larks primarily reside in regions of Spain and are a small passerine bird which uses songs as a means of cultural transmission between members of the species.[46] The Larks have two distinct vocalizations, the song, and the territorial call. The territorial call is used by males to defend and signal territory from other male Larks and is shared between neighbouring territories when males respond to a rivals song.[47] Occasionally it is used as a threat signal to signify an impending attack on territory.[48] A large song repertoire can enhance a male's ability to survive and reproduce as he has a greater ability to defend his territory from other males, and a larger number of males in the species means a larger variety of songs being transmitted.[47] Fragmentation of the Dupont's Lark territory from agriculture, forestry and urbanization appears to have a large effect on their communication structures.[48] Males only perceive territories of a certain distance to be rivals and so isolation of territory from others due to fragmentation leads to a decrease in territorial calls as the males no longer have any reason to use it or have any songs to match.[48]
Humans have also brought on varying implications into ecosystems which in turn affect animal behaviour and responses generated.[49] Although there are some species which are able to survive these kinds of harsh conditions, such as, cutting down wood in the forests for pulp and paper industries, there are animals which can survive this change but some that cannot. An example includes, varying aquatic insects are able to identify appropriate ponds to lay their eggs with the aid of polarized light to guide them, however, due to ecosystem modifications caused by humans they are led onto artificial structures which emit artificial light which are induced by dry asphalt dry roads for an example.[50]
Effect on microorganisms
While habitat fragmentation is often associated with its effects on large plant and animal populations and biodiversity, due to the interconnectedness of ecosystems there are also significant effects that it has on the
Effect on mutualistic and antagonistic relationships
A metadata analysis has found that habitat fragmentation greatly affects mutualistic relationships while affecting antagonistic relationships, such as predation and herbivory, to a less degree.[54] For example, the mutualistic relationship between Mesogyne insignis and Megachile. A study has found greater pollination and increased fruit production of M. insignis in unfragmented forests verses fragmented forests.[55] As for an example of an antagonistic relationship of nest predation, a study found that there is no increase in nest predation on fragmented forests - thus not supporting the edge effect hypothesis.[56]
Forest fragmentation
![]() |

Forest fragmentation is a form of habitat fragmentation where forests are reduced (either naturally or man-made) to relatively small, isolated patches of forest known as forest fragments or forest remnants.
Forest fragmentation also includes less subtle forms of discontinuities such as utility right-of-ways (ROWs). Utility ROWs are of ecological interest because they have become pervasive in many forest communities, spanning areas as large as 5 million acres in the United States.[57] Utility ROWs include electricity transmission ROWs, gas pipeline and telecommunication ROWs. Electricity transmission ROWs are created to prevent vegetation interference with transmission lines. Some studies have shown that electricity transmission ROWs harbor more plant species than adjoining forest areas,[58] due to alterations in the microclimate in and around the corridor. Discontinuities in forest areas associated with utility right-of-ways can serve as biodiversity havens for native bees [57] and grassland species,[59] as the right-of-ways are preserved in an early successional stage.
Forest fragmentation reduces food resources and habitat sources for animals thus splitting these species apart. Thus, making these animals become much more susceptible to effects of predation and making them less likely to perform interbreeding - lowering genetic diversity.[60]
Implications
Forest fragmentation is one of the greatest threats to biodiversity in forests, especially in the tropics.[61] The problem of habitat destruction that caused the fragmentation in the first place is compounded by:
- the inability of individual forest fragments to support viable populations, especially of large vertebrates
- the local extinction of species that do not have at least one fragment capable of supporting a viable population
- edge effects that alter the conditions of the outer areas of the fragment, greatly reducing the amount of true forest interior habitat.[62]
The effect of fragmentation on the
Forest patches that are smaller or more isolated will lose species faster than those that are larger or less isolated. A large number of small forest "islands" typically cannot support the same biodiversity that a single contiguous forest would hold, even if their combined area is much greater than the single forest. However, forest islands in rural landscapes greatly increase their biodiversity.[64] In the Maulino forest of Chile fragmentation appear to not affect overall plant diversity much, and tree diversity is indeed higher in fragments than in large continuous forests.[65][66]
McGill University in Montreal, Quebec, Canada released a university based newspaper statement stating that 70% of the world's remaining forest stands within one kilometre of a forest edge putting biodiversity at an immense risk based on research conducted by international scientists.[67]
Reduced fragment area, increased isolation, and increased edge initiate changes that percolate through all ecosystems. Habitat fragmentation is able to formulate persistent outcomes which can also become unexpected such as an abundance of some species and the pattern that long temporal scales are required to discern many strong system responses.[6]
Sustainable forest management
The presence of forest fragments influences the supply of various
There is a high industrial demand for wood, pulp, paper, and other resources which the forest can provide with, thus businesses which will want more access to the cutting of forests to gain those resources. The rainforest alliance has efficiently been able to put into place an approach to sustainable forest management, and they established this in the late 1980s. Their conservation was deemed successful as it has saved over nearly half a billion acres of land around the world.[69]
A few approaches and measures which can be taken in order to conserve forests are methods by which erosion can be minimized, waste is properly disposed, conserve native tree species to maintain genetic diversity, and setting aside forestland (provides habitat for critical wildlife species).[69] Additionally, forest fires can also occur frequently and measures can also be taken to further prevent forest fires from occurring. For example, in Guatemala’s culturally and ecologically significant Petén region, researchers were able to find over a 20-year period, actively managed FSC-certified forests experienced substantially lower rates of deforestation than nearby protected areas, and forest fires only affected 0.1 percent of certified land area, compared to 10.4 percent of protected areas.[69] However, it must be duly noted that short term decisions regarding forest sector employment and harvest practices can have long-term effects on biodiversity.[70] Planted forests become increasingly important as they supply approximately a quarter of global industrial roundwood production and are predicted to account for 50% of global output within two decades (Brown, 1998; Jaakko Poyry, 1999).[71] Although there have been many difficulties, the implementation of forest certification has been quite prominent in being able to raise effective awareness and disseminating knowledge on a holistic concept, embracing economic, environmental and social issues, worldwide. While also providing a tool for a range of other applications than assessment of sustainability, such as e.g. verifying carbon sinks.[72]
Approaches to understanding habitat fragmentation
Two approaches are typically used to understand habitat fragmentation and its ecological impacts.
Species-oriented approach
The species-oriented approach focuses specifically on individual species and how they each respond to their environment and habitat changes with in it. This approach can be limited because it does only focus on individual species and does not allow for a broad view of the impacts of habitat fragmentation across species.[73]
Pattern-oriented approach
The pattern-oriented approach is based on land cover and its patterning in correlation with species occurrences. One model of study for landscape patterning is the patch-matrix-corridor model developed by
Variegation model
The other model is the variegation model. Variegated landscapes retain much of their natural vegetation but are intermixed with gradients of modified habitat [75] This model of habitat fragmentation typically applies to landscapes that are modified by agriculture. In contrast to the fragmentation model that is denoted by isolated patches of habitat surrounded by unsuitable landscape environments, the variegation model applies to landscapes modified by agriculture where small patches of habitat remain near the remnant original habitat. In between these patches are a matrix of grassland that is often modified versions of the original habitat. These areas do not present as much of a barrier to native species.[76]
See also
Bibliography
- Lindenmayer D.B & Fischer J (2013) Habitat Fragmentation and Landscape Change: An Ecological and Conservation Synthesis (Island Press)
References
- ^ GLOBIO
- ^ doi:10.1130/G31182.1.
- S2CID 91260144.
- ^ .
- ^ van den Berg LJL, Bullock JM, Clarke RT, Langsten RHW, Rose RJ. 2001. Territory selection by the Dartford warbler (Sylvia undata) in Dorset, England: the role of vegetation type, habitat fragmentation, and population size. Biol. Conserv. 101:217-28
- ^ PMID 26601154.
- JSTOR 2399621.
- .
- .
- ^ .
- JSTOR 1313420.
- ^ .
- ^ .
- ^ Fahrig, L. (2018) Forty years of biais in habitat fragmentation research, In: Effective Conservation Science: Data Not Dogma (Edited by Kareiva, Marvier and Silliman), Oxford University Press, United Kingdom
- S2CID 52839843.
- ^ a b Rosenzweig, Michael L. (1995). Species diversity in space and time. Cambridge: Cambridge University Press.
- PMID 21929788.
- PMID 17148116.
- S2CID 16927557.
- ^ Quammen, David (1997), "The Song of the Dodo: Island Biogeography in an Age of Extinction" (Scribner)
- ^ a b "Habitat Loss". National Wildlife Federation. Retrieved 2020-03-06.
- PMID 28673992.
- .
- S2CID 44009934.
- ^ "Wildlife Crossings: Animals survive with bridges and tunnels". Wilder Eutopia. 2013-05-19. Retrieved 19 December 2017.
- S2CID 41070926.
- ISBN 9781444313499.
- ISBN 9780521702713.
- ^ PMID 30111882.
- S2CID 84923092.
- S2CID 1665248.
- ^ PMID 28616062.
- PMID 28198816.
- ISSN 0066-4162.
- PMID 21237900.
- PMID 28603529.
- PMID 27920383.
- hdl:2164/9606.
- ^ "Macquaria australasica". fishesofaustralia.net.au. Retrieved 2018-06-06.
- PMID 16698935.
- .
- S2CID 2446276.
- ^ PMID 20862274.
- ^ doi:10.1139/Z07-094.
- ^ .
- ^ PMID 28940254.
- ^ hdl:10261/57878.
- ^ .
- ISSN 1045-2249.
- ^ "polarized Light Pollution: a new kind of ecological photopollution". Research Gate.
- ^ S2CID 85037421.
- ISSN 0030-1299.
- .
- S2CID 5526322.
- .
- S2CID 20971928.
- ^ .
- .
- PMID 26565700.
- ISBN 978-3-642-12754-0
- ISBN 978-0-300-08483-2.
- ISBN 978-0-226-31763-2.
- ISBN 978-0-470-01617-6
- ^ , Banaszak J. (ed.) 2000. Ecology of Forest Islands. Bydgoszcz University Press, Bydgoszcz, Poland, 313 pp.
- ^ Bustamante, Ramiro O.; Simonetti, Javier A.; Grez, Audrey A.; San Martín, José (2005). "Fragmentación y dinámica de regeneración del bosque Maulino: diagnóstico actual y perspectivas futuras" [Fragmentation and regeneration dynamics of the Maulino forest: present status and future prospects] (PDF). In Smith, C.; Armesto, J.; Valdovinos, C. (eds.). Historia, biodiversidad y ecología de los bosques costeros de Chile (in Spanish). pp. 529–539.
- .
- ^ "Forest fragmentation threatens biodiversity". Newsroom. Retrieved 2020-03-06.
- S2CID 128938268
- ^ a b c "What is Sustainable Forestry?". Rainforest Alliance. 28 July 2016. Retrieved 2020-03-06.
- ^ "Strategies for Sustainable Forest Management" (PDF). fed.us.
- ISSN 1389-9341.
- PMID 12659807.
- .
- ^ Fischer, Joern & B. Lindenmayer, David. (2007). Landscape modification and habitat fragmentation: a synthesis. Global Ecology and Biogeography. 16. 265-280. 10.1111/j.1466-8238.2007.00287.
- ^ "Landscape Ecology and Landscape Change" (PDF). Retrieved March 22, 2018.
- JSTOR 2385863.
External links

- GLOBIO, an ongoing programme to map the past, current and future impacts of human activities on the natural environment, specifically highlighting larger wilderness areas and their fragmentation
- Monash Virtual Laboratory – Simulations of habitat fragmentation and population genetics online at Monash University's Virtual Laboratory.
- Defragmentation in Belgium (Flanders) – Connecting nature, connecting people. Accessed: Jan 22, 2009
- Wildlife passages – De-Fragmentation in the Netherlands – How to evaluate their effectiveness? Accessed: Jan 22, 2009
- Landscape Fragmentation in Europe The technical report from 2006 - the result of a collaboration between the Swiss Federal Office for the Environment (FOEN) and the European Environment Agency (EEA). Accessed: Feb 22, 2016
- Kinver, Mark. (2013, September 26). "Forest fragmentation triggers 'ecological Armageddon'", BBC News.