Hippopotamidae

Source: Wikipedia, the free encyclopedia.

Hippopotamidae
Temporal range: 7.4–0 
Ma
Late Miocene-Recent
Common hippopotamus
Pygmy hippopotamus
Scientific classification Edit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Artiodactyla
Suborder: Whippomorpha
Superfamily:
Hippopotamoidea
Family: Hippopotamidae
Gray, 1821
Subtaxa

Trilobophorus Geze, 1985

Hippopotamidae is a

cetaceans
. They are sometimes referred to as hippopotamids.

There are two living species of hippopotamid in two genera; the pygmy hippo,

Hippopotamus amphibius. The term hippopotamus can also be applied to hippopotamids in general, although it is most frequently used for the common hippo and its respective genus
.

Characteristics

Hippopotamids are large mammals, with short, stumpy legs, and barrel-shaped bodies. They have large heads, with broad mouths, and nostrils placed at the top of their snouts. Like pigs, they have four toes, but unlike pigs, all of the toes are used in walking. Hippopotamids are

unguligrade, although, unlike most other such animals, they have no hooves, instead using a pad of tough connective tissue on each foot. Their stomachs have three chambers, but they are not true ruminants
.

The living species are smooth-skinned and lack both

epidermis is relatively thin, so hippos dehydrate rapidly in dry environments.[1]

Both the

canines are large and tusk-like, although the canine tusks are by far the larger. The tusks grow throughout life. The postcanine teeth are large and complex, suited for chewing the plant matter that comprises their diets. The number of incisors varies even within the same species, but the general dental formula
is given in the table below:

Dentition
2–3.1.4.3
1–3.1.4.3

Evolution

Hippopotamus skeleton at Għar Dalam

The hippopotamids are descended from the

anthracotheres, a family of semiaquatic and terrestrial artiodactyls that appeared in the late Eocene, and are thought to have resembled small- or narrow-headed hippos. The hippos split off from the anthracotheres some time during the Miocene. The oldest records of Hippopotamidae are from Afro-Arabia and date to the late Miocene, approximately 7.4 million years ago, expanding into Eurasia around 6 million years ago.[2] After the appearance of the hippopotamids, the remaining anthracotheres went into a decline brought about by a combination of climatic change and competition with their descendants, until the last genus, Merycopotamus, died out in the early Pliocene
of India.

There were once many species of hippopotamid, but only two survive today: Hippopotamus amphibius, and Choeropsis liberiensis. They are the last survivors of two major

subfamilies
, but their relationship to each other – apart from being fairly distant relatives – is not well resolved.

The enigmatic

phylogeny with any degree of certainty. In addition, the genus Hexaprotodon, which is now largely restricted to South Asia and Southeast Asia, formerly included many fossil hippopotamuses that are now thought to be unrelated.[3]

Taxonomy

Hippopotamidae's placement within

Artiodactyla can be represented in the following cladogram:[4][5][6][7][8]

  
Artiodactyla
  

  Tylopoda (camels and kin)

  Artiofabula  

  Suina (pigs and kin)

  Cetruminantia  

 

Ruminantia (ruminants)
 

  
Cetancodonta
  

  Hippopotamidae (hippopotamids)

  Cetacea (whales)

  (or Whippomorpha)  

Analogous structures

The lower canine teeth of hippopotamids are similar in function and structure to the tusks of elephants. While hippopotamids and elephants are only very distantly related within the Mammalia, the lower canine teeth of both groups are long and have a slight curve, and species of both families use this structure when fighting.

Species

The systematics and taxonomy used here mostly follows a review by J.-R. Boisserie[9][a] and the American Society of Mammalogists.[10]

Recent species

Fossil species

Footnotes

  1. ^ a b Boisserie (2005)[9] identified the species Hippopotamus minor as Phanourios minutus, but this genus is not widely recognized.

References

  1. .
  2. .
  3. .
  4. ^ Beck, N.R. (2006). "A higher-level MRP supertree of placental mammals". BMC Evol Biol. 6: 93.
    PMID 17101039
    .
  5. ^ O'Leary, M.A.; Bloch, J.I.; Flynn, J.J.; Gaudin, T.J.; Giallombardo, A.; Giannini, N.P.; et al. (2013). "The placental mammal ancestor and the post-K-Pg radiation of placentals". Science. 339 (6120): 662–667.
    S2CID 206544776
    .
  6. ^ Song, S.; Liu, L.; Edwards, S.V.; Wu, S. (2012). "Resolving conflict in eutherian mammal phylogeny using phylogenomics and the multispecies coalescent model". Proceedings of the National Academy of Sciences. 109 (37): 14942–14947.
    PMID 22930817
    .
  7. ^ dos Reis, M.; Inoue, J.; Hasegawa, M.; Asher, R.J.; Donoghue, P.C.J.; Yang, Z. (2012). "Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny". Proceedings of the Royal Society B: Biological Sciences. 279 (1742): 3491–3500.
    PMID 22628470
    .
  8. ^ Upham, N.S.; Esselstyn, J.A.; Jetz, W. (2019). "Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation". PLOS Biology. 17 (12): e3000494.
    PMID 31800571
    ;
    (see fig S10).
  9. ^ a b Boisserie, Jean-Renaud (2005). "The phylogeny and taxonomy of Hippopotamidae (Mammalia: Artiodactyla): A review based on morphology and cladistic analysis". .
  10. ^ Upham, Nathan; Burgin, Connor; Widness, Jane; Liphardt, Schuyler; Parker, Camila; Becker, Madeleine; et al. (10 August 2021) [2004]. "Mammal Diversity Database" (vers. 1.6). . Retrieved 28 August 2021.

Further reading