Hippuric acid

Source: Wikipedia, the free encyclopedia.
Hippuric acid
Structural formula of hippuric acid
Recrystallised hippuric acid
Names
IUPAC name
N-Benzoylglycine
Preferred IUPAC name
Benzamidoacetic acid
Other names
  • Hippuric acid
  • Benzoyl glycocoll
  • Benzoyl amidoacetic acid
Identifiers
3D model (
JSmol
)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard
100.007.098 Edit this at Wikidata
KEGG
UNII
  • InChI=1S/C9H9NO3/c11-8(12)6-10-9(13)7-4-2-1-3-5-7/h1-5H,6H2,(H,10,13)(H,11,12) checkY
    Key: QIAFMBKCNZACKA-UHFFFAOYSA-N checkY
  • InChI=1/C9H9NO3/c11-8(12)6-10-9(13)7-4-2-1-3-5-7/h1-5H,6H2,(H,10,13)(H,11,12)
    Key: QIAFMBKCNZACKA-UHFFFAOYAD
  • OC(=O)CNC(=O)c1ccccc1
Properties
C9H9NO3
Molar mass 179.175 g·mol−1
Density 1.371 g/cm3
Melting point 187 to 188 °C (369 to 370 °F; 460 to 461 K)
Boiling point 240 °C (464 °F; 513 K) (decomposes)
Hazards
Safety data sheet (SDS) Material Safety Data Sheet
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Hippuric acid (Gr. hippos, horse, ouron, urine) is a carboxylic acid and organic compound. It is found in urine and is formed from the combination of benzoic acid and glycine. Levels of hippuric acid rise with the consumption of phenolic compounds (such as in fruit juice, tea and wine). The phenols are first converted to benzoic acid, and then to hippuric acid and excreted in urine.[1]

Hippuric acid crystallizes in

toluene intoxication; however, scientists have called this correlation into question because there are other variables that affect levels of hippuric acid.[3] When many aromatic compounds such as benzoic acid and toluene are taken internally, they are converted to hippuric acid by reaction with the amino acid, glycine
.

Synthesis

A modern synthesis of hippuric acid involves the acylation of glycine with benzoyl chloride ("Schotten–Baumann reaction").[4]

Physiology

Biochemically, hippuric acid is produced from

benzoyl CoA, an acylating agent.[6]

Hippuric acid may be formed from the essential amino acid

Iron(II) donating an electron, to directly release carbon dioxide, followed by carbon monoxide, for the formation of a stable toluene radical which is resolved by an antioxidant such as ascorbate. In all of the aforementioned cases, benzaldehyde undergoes biotransformation via CYP450 to benzoic acid followed by conjugation to glycine for formation of hippurate which undergoes urinary excretion.[7] Similarly, toluene reacts with CYP450 to form benzaldehyde.[8]

Hippuric acid has been reported to be a marker for Parkinson's disease.[9]

Reactions

Hippuric acid is readily

hydrolysed by hot caustic alkalis to benzoic acid and glycine. Nitrous acid converts it into benzoyl glycolic acid, C6H5C(=O)OCH2CO2H. Its ethyl ester reacts with hydrazine to form hippuryl hydrazine, C6H5CONHCH2CONHNH2, which was used by Theodor Curtius for the preparation of hydrazoic acid.[2]

History

See also

References