Homeobox

Source: Wikipedia, the free encyclopedia.
(Redirected from
Homeodomain
)
Homeodomain
SCOP2
1ahd / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
PDB1ahd​, 1akh​, 1apl​, 1au7​, 1b72​, 1b8i​, 1bw5​, 1cqt​, 1du0​, 1du6​, 1e3o​, 1enh​, 1f43​, 1fjl​, 1ftt​, 1ftz​, 1gt0​, 1hdd​, 1hdp​, 1hf0​, 1hom​, 1ic8​, 1ig7​, 1jgg​, 1k61​, 1kz2​, 1le8​, 1lfb​, 1lfu​, 1mh3​, 1mh4​, 1mnm​, 1nk2​, 1nk3​, 1o4x​, 1ocp​, 1oct​, 1p7i​, 1p7j​, 1pog​, 1puf​, 1qry​, 1s7e​, 1san​, 1uhs​, 1vnd​, 1wi3​, 1x2m​, 1x2n​, 1yrn​, 1yz8​, 1zq3​, 1ztr​, 2cqx​, 2cra​, 2cue​, 2cuf​, 2dmq​, 2e1o​, 2ecb​, 2ecc​, 2h8r​, 2hdd​, 2hi3​, 2hoa​, 2jwt​, 2lfb​, 2p81​, 2r5y​, 2r5z​, 3hdd​, 9ant

A homeobox is a DNA sequence, around 180 base pairs long, that regulates large-scale anatomical features in the early stages of embryonic development. Mutations in a homeobox may change large-scale anatomical features of the full-grown organism.

Homeoboxes are found within

protein fold structure that binds DNA to regulate expression of target genes.[3][4][2] Homeodomain proteins regulate gene expression and cell differentiation during early embryonic development, thus mutations in homeobox genes can cause developmental disorders.[5]

animals. The homeobox domain was first identified in a number of Drosophila homeotic and segmentation proteins, but is now known to be well-conserved in many other animals, including vertebrates.[3][7][8]

Discovery

Drosophila with the antennapedia mutant phenotype exhibit homeotic transformation of the antennae into leg-like structures on the head.

The existence of homeobox genes was first discovered in

Indiana University in Bloomington in 1984.[11][12] Isolation of homologous genes by Edward de Robertis and William McGinnis revealed that numerous genes from a variety of species contained the homeobox.[13][14] Subsequent phylogenetic studies detailing the evolutionary relationship between homeobox-containing genes showed that these genes are present in all bilaterian
animals.

Homeodomain structure

The characteristic homeodomain

protein fold consists of a 60-amino acid long domain composed of three alpha helixes. The following shows the consensus homeodomain (~60 amino acid chain):[15]

            Helix 1          Helix 2         Helix 3/4
         ______________    __________    _________________
RRRKRTAYTRYQLLELEKEFHFNRYLTRRRRIELAHSLNLTERHIKIWFQNRRMKWKKEN
....|....|....|....|....|....|....|....|....|....|....|....|
         10        20        30        40        50        60
The vnd/NK-2 homeodomain-DNA complex. Helix 3 of the homeodomain binds in the major groove of the DNA and the N-terminal arm binds in the minor groove, in analogy with other homeodomain-DNA complexes.

Helix 2 and helix 3 form a so-called

major groove of the DNA.[7]

Homeodomain proteins are found in

steric
interference of the beta-carbon with the main chain: for cro and repressor proteins the glycine appears to be mandatory, whereas for many of the homeotic and other DNA-binding proteins the requirement is relaxed.

Sequence specificity

Homeodomains can bind both specifically and nonspecifically to

promoter region
of a specific target gene.

Biological function

Homeodomain proteins function as

pluripotency
and preventing cell differentiation.

Regulation

Hox genes and their associated microRNAs are highly conserved developmental master regulators with tight tissue-specific, spatiotemporal control. These genes are known to be dysregulated in several cancers and are often controlled by DNA methylation.[18][19] The regulation of Hox genes is highly complex and involves reciprocal interactions, mostly inhibitory. Drosophila is known to use the polycomb and trithorax complexes to maintain the expression of Hox genes after the down-regulation of the pair-rule and gap genes that occurs during larval development. Polycomb-group proteins can silence the Hox genes by modulation of chromatin structure.[20]

Mutations

Mutations to homeobox genes can produce easily visible phenotypic changes in body segment identity, such as the Antennapedia and Bithorax mutant phenotypes in Drosophila. Duplication of homeobox genes can produce new body segments, and such duplications are likely to have been important in the evolution of segmented animals.

Evolution

The homeobox itself may have evolved from a non-DNA-binding transmembrane domain at the C-terminus of the MraY enzyme. This is based on metagenomic data acquired from the transitional archaeon,

Lokiarchaeum, that is regarded as the prokaryote closest to the ancestor of all eukaryotes.[21][unreliable source?
]

Phylogenetic analysis of homeobox gene sequences and homeodomain protein structures suggests that the last common ancestor of plants, fungi, and animals had at least two homeobox genes.[22] Molecular evidence shows that some limited number of Hox genes have existed in the Cnidaria since before the earliest true Bilatera, making these genes pre-Paleozoic.[23] It is accepted that the three major animal ANTP-class clusters, Hox, ParaHox, and NK (MetaHox), are the result of segmental duplications. A first duplication created MetaHox and ProtoHox, the latter of which later duplicated into Hox and ParaHox. The clusters themselves were created by tandem duplications of a single ANTP-class homeobox gene.[24] Gene duplication followed by neofunctionalization is responsible for the many homeobox genes found in eukaryotes.[25][26] Comparison of homeobox genes and gene clusters has been used to understand the evolution of genome structure and body morphology throughout metazoans.[27]

Types of homeobox genes

Hox genes

Hox gene expression in Drosophila melanogaster.

Hox genes are the most commonly known subset of homeobox genes. They are essential

metazoan genes that determine the identity of embryonic regions along the anterior-posterior axis.[28] The first vertebrate Hox gene was isolated in Xenopus by Edward De Robertis and colleagues in 1984.[29]
The main interest in this set of genes stems from their unique behavior and arrangement in the genome. Hox genes are typically found in an organized cluster. The linear order of Hox genes within a cluster is directly correlated to the order they are expressed in both time and space during development. This phenomenon is called colinearity.

Mutations in these homeotic genes cause displacement of body segments during embryonic development. This is called ectopia. For example, when one gene is lost the segment develops into a more anterior one, while a mutation that leads to a gain of function causes a segment to develop into a more posterior one. Famous examples are Antennapedia and bithorax in Drosophila, which can cause the development of legs instead of antennae and the development of a duplicated thorax, respectively.[30]

In vertebrates, the four

endothelial cell (EC) migration by upregulating MMP14 and uPAR. Conversely, HoxD10 and HoxA5 have the opposite effect of suppressing EC migration and angiogenesis, and stabilizing adherens junctions by upregulating TIMP1/downregulating uPAR and MMP14, and by upregulating Tsp2/downregulating VEGFR2, Efna1, Hif1alpha and COX-2, respectively.[40][41] HoxA5 also upregulates the tumor suppressor p53 and Akt1 by downregulation of PTEN.[42] Suppression of HoxA5 has been shown to attenuate hemangioma growth.[43] HoxA5 has far-reaching effects on gene expression, causing ~300 genes to become upregulated upon its induction in breast cancer cell lines.[43] HoxA5 protein transduction domain overexpression prevents inflammation shown by inhibition of TNFalpha-inducible monocyte binding to HUVECs.[44][45]

LIM genes

LIM genes (named after the initial letters of the names of three proteins where the characteristic domain was first identified) encode two 60 amino acid cysteine and histidine-rich LIM domains and a homeodomain. The LIM domains function in protein-protein interactions and can bind zinc molecules. LIM domain proteins are found in both the cytosol and the nucleus. They function in cytoskeletal remodeling, at focal adhesion sites, as scaffolds for protein complexes, and as transcription factors.[46]

Pax genes

Most Pax genes contain a homeobox and a paired domain that also binds DNA to increase binding specificity, though some Pax genes have lost all or part of the homeobox sequence.[47] Pax genes function in embryo segmentation, nervous system development, generation of the frontal eye fields, skeletal development, and formation of face structures. Pax 6 is a master regulator of eye development, such that the gene is necessary for development of the optic vesicle and subsequent eye structures.[48]

POU genes

Proteins containing a POU region consist of a homeodomain and a separate,

structurally homologous POU domain that contains two helix-turn-helix motifs and also binds DNA. The two domains are linked by a flexible loop that is long enough to stretch around the DNA helix, allowing the two domains to bind on opposite sides of the target DNA, collectively covering an eight-base segment with consensus sequence 5'-ATGCAAAT-3'. The individual domains of POU proteins bind DNA only weakly, but have strong sequence-specific affinity when linked. The POU domain itself has significant structural similarity with repressors expressed in bacteriophages, particularly lambda phage
.

Plant homeobox genes

As in animals, the plant homeobox genes code for the typical 60 amino acid long DNA-binding homeodomain or in case of the TALE (three amino acid loop extension) homeobox genes for an atypical homeodomain consisting of 63 amino acids. According to their conserved intron–exon structure and to unique codomain architectures they have been grouped into 14 distinct classes: HD-ZIP I to IV, BEL, KNOX, PLINC, WOX, PHD, DDT, NDX, LD, SAWADEE and PINTOX.[25] Conservation of codomains suggests a common eukaryotic ancestry for TALE[49] and non-TALE homeodomain proteins.[50]

Human homeobox genes

The Hox genes in humans are organized in four chromosomal clusters:

name chromosome gene
HOXA (or sometimes HOX1) - HOXA@
chromosome 7
HOXA10, HOXA11, HOXA13
HOXB - HOXB@ chromosome 17 HOXB1, HOXB2, HOXB3, HOXB4, HOXB5, HOXB6, HOXB7, HOXB8, HOXB9, HOXB13
HOXC - HOXC@ chromosome 12 HOXC4, HOXC5, HOXC6, HOXC8, HOXC9, HOXC10, HOXC11, HOXC12, HOXC13
HOXD - HOXD@ chromosome 2 HOXD1, HOXD3, HOXD4, HOXD8, HOXD9, HOXD10, HOXD11, HOXD12, HOXD13

ParaHox genes are analogously found in four areas. They include CDX1, CDX2, CDX4; GSX1, GSX2; and PDX1. Other genes considered Hox-like include EVX1, EVX2; GBX1, GBX2; MEOX1, MEOX2; and MNX1. The NK-like (NKL) genes, some of which are considered "MetaHox", are grouped with Hox-like genes into a large ANTP-like group.[51][52]

Humans have a

DLX3, DLX4, DLX5, and DLX6. Dlx genes are involved in the development of the nervous system and of limbs.[53] They are considered a subset of the NK-like genes.[51]

Human TALE (Three Amino acid Loop Extension) homeobox genes for an "atypical" homeodomain consist of 63 rather than 60 amino acids:

In addition, humans have the following homeobox genes and proteins:[51]

  1. ^ Grouped as Lmx 1/5, 2/9, 3/4, and 6/8.
  2. ^ Grouped as Six 1/2, 3/6, and 4/5.
  3. ^ Questionable, per [51]
  4. ^ The Pax genes. Grouped as Pax2/5/8, Pax3/7, and Pax4/6.
  5. ^ Nk4.
  6. ^ Nk5.

See also

References

  1. PMID 7903398
    .
  2. ^ .
  3. ^ .
  4. .
  5. ^ Reference GH. "Homeoboxes". Genetics Home Reference. Archived from the original on 2019-12-21. Retrieved 2019-11-20.
  6. ^ Materials for the study of variation, treated with especial regard to discontinuity in the origin of species William Bateson 1861–1926. London : Macmillan 1894 xv, 598 p
  7. ^
    S2CID 53188259
    .
  8. .
  9. .
  10. ^ "Walter Jakob Gehring (1939-2014) | The Embryo Project Encyclopedia". embryo.asu.edu. Archived from the original on 2019-12-09. Retrieved 2019-12-09.
  11. S2CID 4235713
    .
  12. .
  13. .
  14. from the original on 2021-05-04. Retrieved 2019-12-09.
  15. ^ Bürglin TR. "The homeobox page" (gif). Karolinksa Institute. Archived from the original on 2011-07-21. Retrieved 2010-01-30.
  16. ^ "CATH Superfamily 1.10.10.60". www.cathdb.info. Archived from the original on 9 August 2017. Retrieved 27 March 2018.
  17. PMID 1357628
    .
  18. .
  19. .
  20. from the original on 2012-01-02. Retrieved 2008-02-27.
  21. doi:10.13140/RG.2.2.35941.65760. Archived from the original on 2021-05-04. Retrieved 2018-10-26 – via ResearchGate. {{cite journal}}: Cite journal requires |journal= (help
    )
  22. .
  23. .
  24. .
  25. ^ .
  26. .
  27. .
  28. .
  29. .
  30. .
  31. .
  32. .
  33. .
  34. .
  35. .
  36. .
  37. .
  38. .
  39. .
  40. .
  41. .
  42. .
  43. ^ .
  44. .
  45. .
  46. .
  47. from the original on 2021-05-02. Retrieved 2019-12-11.
  48. .
  49. .
  50. .
  51. ^ .
  52. .
  53. .

Further reading

External links

This article incorporates text from the public domain Pfam and InterPro: IPR001356