Hormone
A hormone (from the
Hormones are used to communicate between
Hormones affect distant cells by binding to specific
In vertebrates,
Plants lack specialized organs for the secretion of hormones, although there is spatial distribution of hormone production. For example, the hormone auxin is produced mainly at the tips of young leaves and in the shoot apical meristem. The lack of specialised glands means that the main site of hormone production can change throughout the life of a plant, and the site of production is dependent on the plant's age and environment.[9]
Introduction and overview
Hormonal signaling involves the following steps:[10]
- Biosynthesis of a particular hormone in a particular tissue.
- Storage and secretionof the hormone.
- Transport of the hormone to the target cell(s).
- Recognition of the hormone by an intracellular receptorprotein.
- Relay and amplification of the received hormonal signal via a negative feedback loop.
- Breakdown of the hormone.
Hormone producing cells are found in the
Discovery
Arnold Adolph Berthold (1849)
Charles and Francis Darwin (1880)
Although known primarily for his work on the Theory of Evolution, Charles Darwin was also keenly interested in plants. Through the 1870s, he and his son Francis studied the movement of plants towards light. They were able to show that light is perceived at the tip of a young stem (the coleoptile), whereas the bending occurs lower down the stem. They proposed that a 'transmissible substance' communicated the direction of light from the tip down to the stem. The idea of a 'transmissible substance' was initially dismissed by other plant biologists, but their work later led to the discovery of the first plant hormone.[14] In the 1920s Dutch scientist Frits Warmolt Went and Russian scientist Nikolai Cholodny (working independently of each other) conclusively showed that asymmetric accumulation of a growth hormone was responsible for this bending. In 1933 this hormone was finally isolated by Kögl, Haagen-Smit and Erxleben and given the name 'auxin'.[14][15][16]
Oliver and Schäfer (1894)
British physician George Oliver` and physiologist Edward Albert Schäfer, professor at University College London, collaborated on the physiological effects of adrenal extracts. They first published their findings in two reports in 1894, a full publication followed in 1895.[17][18] Though frequently falsely attributed to secretin, found in 1902 by Bayliss and Starling, Oliver and Schäfer's adrenal extract containing adrenaline, the substance causing the physiological changes, was the first hormone to be discovered. The term hormone would later be coined by Starling.[19]
Bayliss and Starling (1902)
Types of signaling
Hormonal effects are dependent on where they are released, as they can be released in different manners.[20] Not all hormones are released from a cell and into the blood until it binds to a receptor on a target. The major types of hormone signaling are:
SN | Types | Description |
---|---|---|
1 | Endocrine | Acts on the target cells after being released into the bloodstream. |
2 | Paracrine | Acts on the nearby cells and does not have to enter general circulation. |
3 | Autocrine | Affects the cell types that secreted it and causes a biological effect. |
4 | Intracrine | Acts intracellularly on the cells that synthesized it. |
Chemical classes
As hormones are defined functionally, not structurally, they may have diverse chemical structures. Hormones occur in
Vertebrates
SN | Types | Description |
---|---|---|
1 | Proteins/
Peptides |
Peptide hormones are made of a chain of amino acids that can range from just 3 to hundreds. Examples include oxytocin and insulin.[12] Their sequences are encoded in DNA and can be modified by alternative splicing and/or post-translational modification.[20] They are packed in vesicles and are hydrophilic, meaning that they are soluble in water. Due to their hydrophilicity, they can only bind to receptors on the membrane, as travelling through the membrane is unlikely. However, some hormones can bind to intracellular receptors through an intracrine mechanism. |
2 | Amino Acid
Derivatives |
Thyroxine .
|
3 | Steroids | lipophilic and hence can cross membranes to bind to intracellular nuclear receptors .
|
4 | Eicosanoids | Eicosanoids hormones are derived from lipids such as arachidonic acid, lipoxins, thromboxanes and prostaglandins. Examples include prostaglandin and thromboxane. These hormones are produced by cyclooxygenases and lipoxygenases. They are hydrophobic and act on membrane receptors. |
5 | Gases | Ethylene and Nitric Oxide |
Invertebrates
Compared with vertebrates,
Plants
Examples include abscisic acid, auxin, cytokinin, ethylene, and gibberellin.[25]
Receptors
Receptors for most
For
Effects in humans
Hormones have the following effects on the body:[31]
- stimulation or inhibition of growth
- wake-sleep cycle and other circadian rhythms
- mood swings
- induction or suppression of apoptosis (programmed cell death)
- activation or inhibition of the immune system
- regulation of metabolism
- preparation of the body for fighting, fleeing, and other activity
- preparation of the body for a new phase of life, such as puberty, parenting, and menopause
- control of the reproductive cycle
- hunger cravings
A hormone may also regulate the production and release of other hormones. Hormone signals control the internal environment of the body through homeostasis.
Regulation
The rate of hormone biosynthesis and secretion is often regulated by a homeostatic negative feedback control mechanism. Such a mechanism depends on factors that influence the metabolism and excretion of hormones. Thus, higher hormone concentration alone cannot trigger the negative feedback mechanism. Negative feedback must be triggered by overproduction of an "effect" of the hormone.[32][33]

Hormone secretion can be stimulated and inhibited by:
- Other hormones (stimulating- or releasing -hormones)
- Plasma concentrations of ions or nutrients, as well as binding globulins
- Neurons and mental activity
- Environmental changes, e.g., of light or temperature
One special group of hormones is the
To release active hormones quickly into the circulation, hormone biosynthetic cells may produce and store biologically inactive hormones in the form of pre- or prohormones. These can then be quickly converted into their active hormone form in response to a particular stimulus.[34]
Eicosanoids are considered to act as local hormones. They are considered to be "local" because they possess specific effects on target cells close to their site of formation. They also have a rapid degradation cycle, making sure they do not reach distant sites within the body.[35]
Hormones are also regulated by receptor agonists. Hormones are ligands, which are any kinds of molecules that produce a signal by binding to a receptor site on a protein. Hormone effects can be inhibited, thus regulated, by competing ligands that bind to the same target receptor as the hormone in question. When a competing ligand is bound to the receptor site, the hormone is unable to bind to that site and is unable to elicit a response from the target cell. These competing ligands are called antagonists of the hormone.[36]
Therapeutic use
Many hormones and their
A "pharmacologic dose" or "supraphysiological dose" of a hormone is a medical usage referring to an amount of a hormone far greater than naturally occurs in a healthy body. The effects of pharmacologic doses of hormones may be different from responses to naturally occurring amounts and may be therapeutically useful, though not without potentially adverse side effects. An example is the ability of pharmacologic doses of glucocorticoids to suppress inflammation.
Hormone-behavior interactions
At the neurological level, behavior can be inferred based on hormone concentration, which in turn are influenced by hormone-release patterns; the numbers and locations of hormone receptors; and the efficiency of hormone receptors for those involved in gene transcription. Hormone concentration does not incite behavior, as that would undermine other external stimuli; however, it influences the system by increasing the probability of a certain event to occur.[38]
Not only can hormones influence behavior, but also behavior and the environment can influence hormone concentration.[39] Thus, a feedback loop is formed, meaning behavior can affect hormone concentration, which in turn can affect behavior, which in turn can affect hormone concentration, and so on.[40] For example, hormone-behavior feedback loops are essential in providing constancy to episodic hormone secretion, as the behaviors affected by episodically secreted hormones directly prevent the continuous release of said hormones.[41]
Three broad stages of reasoning may be used to determine if a specific hormone-behavior interaction is present within a system:[citation needed]
- The frequency of occurrence of a hormonally dependent behavior should correspond to that of its hormonal source.
- A hormonally dependent behavior is not expected if the hormonal source (or its types of action) is non-existent.
- The reintroduction of a missing behaviorally dependent hormonal source (or its types of action) is expected to bring back the absent behavior.
Comparison with neurotransmitters
There are various clear distinctions between hormones and neurotransmitters:[42][43][36]
- A hormone can perform functions over a larger spatial and temporal scale than can a neurotransmitter, which often acts in micrometer-scale distances.[44]
- Hormonal signals can travel virtually anywhere in the circulatory system, whereas neural signals are restricted to pre-existing nerve tracts.[44]
- Assuming the travel distance is equivalent, neural signals can be transmitted much more quickly (in the range of milliseconds) than can hormonal signals (in the range of seconds, minutes, or hours). Neural signals can be sent at speeds up to 100 meters per second.[45]
- Neural signalling is an all-or-nothing (digital) action, whereas hormonal signalling is an action that can be continuously variable as it is dependent upon hormone concentration.
Neurohormones are a type of hormone that share a commonality with neurotransmitters.[46] They are produced by endocrine cells that receive input from neurons, or neuroendocrine cells.[46] Both classic hormones and neurohormones are secreted by endocrine tissue; however, neurohormones are the result of a combination between endocrine reflexes and neural reflexes, creating a neuroendocrine pathway.[36] While endocrine pathways produce chemical signals in the form of hormones, the neuroendocrine pathway involves the electrical signals of neurons.[36] In this pathway, the result of the electrical signal produced by a neuron is the release of a chemical, which is the neurohormone.[36] Finally, like a classic hormone, the neurohormone is released into the bloodstream to reach its target.[36]
Binding proteins
Hormone transport and the involvement of binding proteins is an essential aspect when considering the function of hormones.[citation needed]

The formation of a complex with a binding protein has several benefits: the effective half-life of the bound hormone is increased, and a reservoir of bound hormones is created, which evens the variations in concentration of unbound hormones (bound hormones will replace the unbound hormones when these are eliminated).[47] An example of the usage of hormone-binding proteins is in the thyroxine-binding protein which carries up to 80% of all thyroxine in the body, a crucial element in regulating the metabolic rate.[48]
See also
- Autocrine signaling
- Adipokine
- Cytokine
- Hepatokine
- Endocrine disease
- Endocrine system
- Endocrinology
- Environmental hormones
- Growth factor
- Intracrine
- List of investigational sex-hormonal agents
- Metabolomics
- Myokine
- Neohormone
- Neuroendocrinology
- Paracrine signaling
- Plant hormones, a.k.a. plant growth regulators
- Semiochemical
- Sex-hormonal agent
- Sexual motivation and hormones
- Xenohormone
- List of human hormones
References
- OCLC 884499940.
- ISBN 978-0521692014.
- S2CID 72100830.
- ^ "Hormones". MedlinePlus. U.S. National Library of Medicine.
- ^ "Hormone - The hormones of plants". Encyclopedia Britannica. Retrieved 2021-01-05.
- PMID 28348113.
- S2CID 4412000.
- OCLC 36465055.
- ^ "Plant Hormones/Nutrition". www2.estrellamountain.edu. Retrieved 2021-01-07.
- PMID 20821847.
- ^ Wisse, Brent (June 13, 2021). "Endocrine glands". MedlinePlus. Retrieved November 18, 2021.
{{cite web}}
: CS1 maint: url-status (link) - ^ OCLC 1021173479.
- OCLC 1034587285.
- ^ PMID 16670442.
- S2CID 4225835.
- PMID 19357428.
- PMID 16992168.
- PMID 16992252.
- ISBN 9780674366701.
- ^ OCLC 1034587285.
- PMID 1585458.
- .
- ISBN 978-0321861580.
- PMID 15612033.
- PMID 21406974.
- ^ "Signal relay pathways". Khan Academy. Retrieved 2019-11-13.
- ^ Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell J (2000). "G Protein –Coupled Receptors and Their Effectors". Molecular Cell Biology (4th ed.).
- PMID 19458711.
- S2CID 20654561.
- PMID 12606724.
- ISBN 9781482815887.
- PMID 30860733. Retrieved 13 November 2019.
- PMID 26964835.
- ^ OCLC 761377585.
- ^ "Eicosanoids". www.rpi.edu. Retrieved 2017-02-08.
- ^ OCLC 890107246.
- ^ "Hormone Therapy". Cleveland Clinic.
- ^ Nelson, R. J. (2021). Hormones & behavior. In R. Biswas-Diener & E. Diener (Eds), Noba textbook series: Psychology. Champaign, IL: DEF publishers. Retrieved from http://noba.to/c6gvwu9m
- S2CID 7479319, retrieved 2021-11-18
- PMID 27252193.
- OCLC 1022119040.)
{{cite book}}
: CS1 maint: others (link - OCLC 849822337.
- OCLC 60650938.
- ^ )
- OCLC 48122761.
- ^ )
- ^ Boron WF, Boulpaep EL. Medical physiology: a cellular and molecular approach. Updated 2. Philadelphia, Pa: Saunders Elsevier; 2012.
- PMID 4172185.
External links
- HMRbase: A database of hormones and their receptors
- Hormones at the U.S. National Library of Medicine Medical Subject Headings (MeSH)