Human interactions with microbes

This is a good article. Click here for more information.
Source: Wikipedia, the free encyclopedia.
18th dynasty, Thebes, Ancient Egypt

Human interactions with microbes include both practical and symbolic uses of

microbes
, and negative interactions in the form of human, domestic animal, and crop diseases.

Practical use of microbes began in ancient times with fermentation in food processing; bread, beer and wine have been produced by yeasts from the dawn of civilisation, such as in ancient Egypt. More recently, microbes have been used in activities from biological warfare to the production of chemicals by fermentation, as industrial chemists discover how to manufacture a widening variety of organic chemicals including enzymes and bioactive molecules such as hormones and competitive inhibitors for use as medicines. Fermentation is used, too, to produce substitutes for fossil fuels in forms such as ethanol and methane; fuels may also be produced by algae. Anaerobic microorganisms are important in sewage treatment. In scientific research, yeasts and the bacterium Escherichia coli serve as model organisms especially in genetics and related fields.

On the symbolic side, an early poem about brewing is the

Hollywood films, starting with Nosferatu in 1922. In 1971, The Andromeda Strain told the tale of an extraterrestrial microbe threatening life on Earth. Microbiologists since Alexander Fleming have used coloured or fluorescing
colonies of bacteria to create miniature artworks.

Microorganisms such as

domestic animals
.

Context

Calendar from a Medieval book of hours: the month of December, showing a baker putting bread into the oven. c. 1490–1500

mythology, philosophy, literature, and science.[1]
This article describes the roles played by microorganisms in human culture.

Since microbes were not known until the

Early Modern period, they appear in earlier literature indirectly, through descriptions of baking and brewing. Only with the invention of the microscope, as used by Robert Hooke in his 1665 book Micrographia,[2] and by Antonie van Leeuwenhoek in the 1670s,[3] the germ theory of disease, and progress in microbiology in the 19th century were microbes observed directly, identified as living organisms, and put to use on a scientific basis.[citation needed] The same knowledge also allowed microbes to appear explicitly in literature and the arts.[4]

Practical uses

A 16th-century brewery, engraved by Jost Amman

Food production

Controlled

foods with desirable properties. The principal microbes involved are yeasts, in the case of beer, wine, and ordinary bread; and bacteria, in the case of anaerobically fermented vegetables, dairy products, and sourdough bread. The cultures variously provide flavour and aroma, inhibit pathogens, increase digestibility and palatability, make bread rise, reduce cooking time, and create useful products including alcohol, organic acids, vitamins, amino acids, and carbon dioxide. Safety is maintained with the help of food microbiology.[5][6][7]

Water treatment

Oxidative sewage treatment processes rely on microorganisms to oxidise organic constituents. Anaerobic microorganisms reduce sludge solids producing

potable water treatment, one method, the slow sand filter, employs a complex gelatinous layer composed of a wide range of microorganisms to remove both dissolved and particulate material from raw water.[8]

Energy

Microorganisms are used in fermentation to produce ethanol,[9] and in biogas reactors to produce methane.[10] Scientists are researching the use of algae to produce liquid fuels,[11] and bacteria to convert various forms of agricultural and urban waste into usable fuels.[12]

Chemicals, enzymes

An early Penicillin bioreactor, from 1957, now in the Science Museum, London

Microorganisms are used for many commercial and industrial purposes, including the production of chemicals,

blood cholesterol lowering agents, competitively inhibiting the enzyme that synthesizes cholesterol.[13]

Science

Microorganisms are essential tools in biotechnology, biochemistry, genetics, and molecular biology. The yeasts brewer's yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are important model organisms in science, since they are simple eukaryotes that can be grown rapidly in large numbers and are easily manipulated.[14] They are particularly valuable in genetics, genomics and proteomics, for example in protein production.[15][16][17][18] The easily cultured gut bacterium Escherichia coli, a prokaryote, is similarly widely used as a model organism.[19]

Scientists working with Class III cabinets at the U.S. Biological Warfare Laboratories, Camp Detrick, Maryland, in the 1940s

Endosymbiosis

Microbes can form an

folic acid and biotin, and the fermentation of complex indigestible carbohydrates.[20] Future drugs and food chemicals may need to be tested on the gut microbiota; it is already clear that probiotic supplements can promote health, and that gut microbes are affected by both diet and medicines.[21]

Warfare

Pathogenic microbes, and toxins that they produce, have been developed as possible agents of warfare.[22] Crude forms of biological warfare have been practiced since antiquity.[23] In the 6th century BC, the Assyrians poisoned enemy wells with a fungus said to render the enemy delirious.[citation needed] In 1346, the bodies of Mongol warriors of the Golden Horde who had died of plague were thrown over the walls of the besieged Crimean city of Kaffa, possibly assisting the spread of the Black Death into Europe.[24][25][26][27] Advances in

anthrax, brucellosis, and botulism toxins, but never used them.[29]
The USA similarly explored biological warfare agents,
experiments on human prisoners, and was about to use them when the war ended.[32][33][34][35][36]

Symbolic uses

Being very small, and unknown until the invention of the

in literature, art, film, opera and music.[38]

In literature

Jack London's 1912 The Scarlet Plague was reprinted in the February 1949 issue of Famous Fantastic Mysteries

The literary possibilities of

The Last Man and Jack London's 1912 The Scarlet Plague onwards. Medieval writings that deal with plague include Giovanni Boccaccio's The Decameron and Geoffrey Chaucer's The Canterbury Tales: both treat the people's fear of contagion and the resulting moral decline, as well as bodily death.[39]

The making of beer has been celebrated in verse since the time of Ancient

mash on large reed mats, coolness overcomes, ... holds with both hands the great sweet wort, brewing it with honey".[40]

Wine is a frequent topic in

Falstaff drank Spanish "sherris sack", in contrast to Sir Toby Belch's preference for "canary". Wine references in later centuries branch out to more winegrowing regions.[41]

The Microbe is a humorous 1912 poem by Hilaire Belloc, starting with the lines "The microbe is so very small / You cannot make him out at all,/ But many sanguine people hope / To see him through a microscope.[42] Microbes and Man is an admired "classic"[43] book, first published in 1969, by the "father figure of British microbiology"[44][45] John Postgate on the whole subject of microorganisms and their relationships with humans.[46]

In film

Poster for the 1922 film Nosferatu, whose protagonist spreads the Black Death

Microbes feature in many highly dramatized films.

grim reaper directly represented by an actor in a hood. More recently, the 1971 The Andromeda Strain, based on a novel by Michael Crichton, portrayed an extraterrestrial microbe contaminating the Earth.[48]

In music

"

protistan.[49] The COVID-19 pandemic inspired several songs and albums.[50][51]

In art

Microbial art is the creation of artworks by culturing bacteria, typically on agar plates, to form desired patterns. These may be chosen to fluoresce under ultraviolet light in different colours.[52] Alexander Fleming, the discoverer of penicillin, created "germ paintings" using different species of bacteria that were naturally pigmented in different colours.[53]

An instance of a

Tate Gallery, the work "is a roughly modelled organic form, its bulges and single opening suggesting a moving, living creature in the stages of evolution."[54]

Negative interactions

Disease

Microorganisms are the causative agents (

Semper Augustus Tulip, 17th century, owed its pattern to a virus.

The practice of hygiene was created to prevent infection or food spoiling by eliminating microbes, especially bacteria, from the surroundings.[57]

In agriculture and horticulture

Microorganisms including

Great Irish Famine of the 1840s.[62]

The tulip breaking virus played a role in the tulip mania of the Dutch Golden Age. The famous Semper Augustus tulip, in particular, owed its striking pattern to infection with the plant disease, a kind of mosaic virus, making it the most expensive of all the tulip bulbs sold.[63]

References

  1. OCLC 652430995
    .
  2. . Retrieved 22 July 2014.
  3. ^ Payne, A.S. (1970). The Cleere Observer: A Biography of Antoni Van Leeuwenhoek. Macmillan. p. 13.
  4. ^ "Menagerie of Microbes". Ascus. Archived from the original on 27 September 2016. Retrieved 27 September 2016.
  5. ^ "Dairy Microbiology". University of Guelph. Retrieved 9 October 2006.
  6. ^ Steinkraus, K. H., ed. (1995). Handbook of Indigenous Fermented Foods. Marcel Dekker.
  7. .
  8. .
  9. .
  10. .
  11. .
  12. .
  13. .
  14. .
  15. .
  16. .
  17. .
  18. .
  19. .
  20. .
  21. .
  22. .
  23. .
  24. .
  25. .
  26. ^ Robertson, Andrew G.; Robertson, Laura J. "From asps to allegations: biological warfare in history," Military medicine (1995) 160#8 pp: 369–373.
  27. ^ Rakibul Hasan, "Biological Weapons: covert threats to Global Health Security." Asian Journal of Multidisciplinary Studies (2014) 2#9 p 38. online Archived 2014-12-17 at the Wayback Machine
  28. ^ Koenig, Robert (2006), The Fourth Horseman: One Man's Secret Campaign to Fight the Great War in America, PublicAffairs.
  29. .
  30. ^ Covert, Norman M. (2000), "A History of Fort Detrick, Maryland", 4th Edition: 2000. Archived 2012-01-21 at the Wayback Machine
  31. PMID 16819450
    .
  32. .
  33. ^ Naomi Baumslag, Murderous Medicine: Nazi Doctors, Human Experimentation, and Typhus, 2005, p.207
  34. ^ "Weapons of Mass Destruction: Plague as Biological Weapons Agent". GlobalSecurity.org. Retrieved 21 December 2014.
  35. ^ Amy Stewart (25 April 2011). "Where To Find The World's Most 'Wicked Bugs': Fleas". National Public Radio.
  36. ^ Russell Working (5 June 2001). "The trial of Unit 731". The Japan Times.
  37. ^ "Antonie van Leeuwenhoek (1632–1723)". BBC. 2014. Retrieved 29 June 2016.
  38. ^ "Pulmonary Tuberculosis/In Literature and Art". McMaster University History of Diseases. Retrieved 9 June 2017.
  39. PMID 25401183
    .
  40. ^ "Discover the Oldest Beer Recipe in History From Ancient Sumeria, 1800 B.C." Open Culture. 3 March 2015. Retrieved 29 June 2016.
  41. .
  42. ^ Belloc, Hilaire (1912). The Microbe. Duckworth. Retrieved 29 June 2016. {{cite book}}: |work= ignored (help)
  43. .
  44. .
  45. .
  46. .
  47. .
  48. ^ a b Hsu, Jeremy (9 September 2011). "Germs on the Big Screen: 11 Infectious Movies". Live Science. Retrieved 29 June 2016.
  49. ^ "A Very Cellular Song Lyrics". Metro Lyrics. Archived from the original on 2016-03-09. Retrieved 29 June 2016.{{cite news}}: CS1 maint: unfit URL (link)
  50. ^ "From The Urgent To The Absurd, Musicians Take On The Coronavirus Through Song". NPR.org. Retrieved 2022-11-15.
  51. ^ "40 songs about the coronavirus pandemic. Listen here". Chicago Tribune. Retrieved 2022-11-15.
  52. .
  53. ^ Dunn, Rob (11 July 2010). "Painting With Penicillin: Alexander Fleming's Germ Art". Smithsonian Institution.
  54. Tate Gallery
    . Retrieved 29 June 2016.
  55. ^ Alberts, B.; Johnson, A.; Lewis, J. (2002). "Introduction to Pathogens". Molecular Biology of the Cell (4th ed.). Garland Science. p. 1.
  56. ^ "MetaPathogen". Retrieved 15 January 2015.
  57. ^ "Hygiene". Archived from the original on August 23, 2004. Retrieved 29 June 2016.
  58. PMID 18104350
    .
  59. ISBN 978-1-904455-37-0. {{cite book}}: |first= has generic name (help
    )
  60. ^ Agrios, George N. (1972). Plant Pathology (3rd ed.). Academic Press.
  61. ^ Isleib, Jim (19 December 2012). "Signs and symptoms of plant disease: Is it fungal, viral or bacterial?". Michigan State University. Retrieved 28 September 2016.
  62. .
  63. ^ Dash, Mike (2001). Tulipomania: The Story of the World's Most Coveted Flower & the Extraordinary Passions It Aroused. Gollancz.