Hydrocarbon

Page semi-protected
Source: Wikipedia, the free encyclopedia.
(Redirected from
Hydrocarbons
)

Ball-and-stick model of the methane molecule, CH4. Methane is part of a homologous series known as the alkanes, which contain single bonds only.

In organic chemistry, a hydrocarbon is an organic compound consisting entirely of hydrogen and carbon.[1]: 620  Hydrocarbons are examples of group 14 hydrides. Hydrocarbons are generally colourless and hydrophobic; their odor is usually faint, and may be similar to that of gasoline or lighter fluid. They occur in a diverse range of molecular structures and phases: they can be gases (such as methane and propane), liquids (such as hexane and benzene), low melting solids (such as paraffin wax and naphthalene) or polymers (such as polyethylene and polystyrene).

In the

fossil fuels
, or methane released from the handling of natural gas or from agriculture.

Types

As defined by the International Union of Pure and Applied Chemistry's nomenclature of organic chemistry, hydrocarbons are classified as follows:

  1. 3-methylhexane and its higher homologues, branched hydrocarbons can be chiral.[1]: 627  Chiral saturated hydrocarbons constitute the side chains of biomolecules such as chlorophyll and tocopherol.[2]
  2. Unsaturated hydrocarbons, which have one or more double or triple bonds between carbon atoms. Those with one or more double bonds are called alkenes. Those with one double bond have the formula CnH2n (assuming non-cyclic structures).[1]: 628  Those containing triple bonds are called alkyne. Those with one triple bond have the formula CnH2n−2.[1]
    : 631 
  3. aromatic ring. 10% of total nonmethane organic carbon emission are aromatic hydrocarbons from the exhaust of gasoline-powered vehicles.[3]

The term 'aliphatic' refers to non-aromatic hydrocarbons. Saturated aliphatic hydrocarbons are sometimes referred to as 'paraffins'. Aliphatic hydrocarbons containing a double bond between carbon atoms are sometimes referred to as 'olefins'.

Variations on hydrocarbons based on the number of carbon atoms
Number of
carbon atoms
Alkane (single bond) Alkene (double bond) Alkyne (triple bond) Cycloalkane
Alkadiene
1 Methane
2 Ethane
Ethene
(ethylene)
Ethyne (acetylene)
3 Propane
Propene
(propylene)
Propyne
(methylacetylene)
Cyclopropane Propadiene (allene)
4 Butane Butene (butylene) Butyne Cyclobutane
Butadiene
5 Pentane Pentene Pentyne Cyclopentane Pentadiene (piperylene)
6 Hexane Hexene Hexyne Cyclohexane
Hexadiene
7 Heptane Heptene Heptyne Cycloheptane Heptadiene
8 Octane Octene Octyne Cyclooctane
Octadiene
9 Nonane Nonene Nonyne Cyclononane Nonadiene
10 Decane Decene Decyne Cyclodecane Decadiene
11 Undecane Undecene Undecyne Cycloundecane Undecadiene
12 Dodecane
Dodecene
Dodecyne Cyclododecane Dodecadiene

Usage

Crude oil
is processed in several stages to form desired hydrocarbons, used as fuel and in other products.
Tank wagon 33 80 7920 362-0 with hydrocarbon gas at Bahnhof Enns (2018)

The predominant use of hydrocarbons is as a combustible

refining retort. They are collected and widely utilized as roofing compounds, pavement material (bitumen), wood preservatives (the creosote
series) and as extremely high viscosity shear-resisting liquids.

Some large-scale non-fuel applications of hydrocarbons begin with ethane and propane, which are obtained from petroleum and natural gas. These two gases are converted either to syngas or to ethylene and propylene respectively. Global consumption of benzene in 2021 is estimated at more than 58 million metric tons, which will increase to 60 million tons in 2022.[4]

Hydrocarbons are also prevalent in nature. Some eusocial arthropods, such as the Brazilian stingless bee,

cuticular hydrocarbon "scents" in order to determine kin from non-kin. This hydrocarbon composition varies between age, sex, nest location, and hierarchal position.[5]

There is also potential to harvest hydrocarbons from plants like

endophytic bacteria from plants that naturally produce hydrocarbons have been used in hydrocarbon degradation in attempts to deplete hydrocarbon concentration in polluted soils.[7]

Reactions

The noteworthy feature of saturated hydrocarbons is their inertness. Unsaturated hydrocarbons (alkanes, alkenes and aromatic compounds) react more readily, by means of substitution, addition, polymerization. At higher temperatures they undergo dehydrogenation, oxidation and combustion.

Substitution

Of the classes of hydrocarbons, aromatic compounds uniquely (or nearly so) undergo substitution reactions. The chemical process practiced on the largest scale is the reaction of benzene and

ethene to give ethylbenzene
:

C6H6 + C2H4 → C6H5CH2CH3

The resulting ethylbenzene is dehydrogenated to styrene and then polymerized to manufacture polystyrene, a common thermoplastic material.

Free-radical substitution

Substitution reactions occur also in saturated hydrocarbons (all single carbon–carbon bonds). Such reactions require highly reactive reagents, such as

free-radical pathways, in which the halogen first dissociates into a two neutral radical atoms (homolytic fission
).

CH4 + Cl2 → CH3Cl + HCl
CH3Cl + Cl2 → CH2Cl2 + HCl

all the way to CCl4 (carbon tetrachloride)

C2H6 + Cl2 → C2H5Cl + HCl
C2H4Cl2 + Cl2 → C2H3Cl3 + HCl

all the way to C2Cl6 (hexachloroethane)

Addition

Addition reactions apply to alkenes and alkynes. In this reaction a variety of reagents add "across" the pi-bond(s). Chlorine, hydrogen chloride, water, and hydrogen are illustrative reagents.

Addition polymerization

α-olefins
are extended to make longer α-olefins by adding ethylene repeatedly.

Hydrogenation

Metathesis

Some hydrocarbons undergo metathesis, in which substituents attached by C–C bonds are exchanged between molecules. For a single C–C bond it is alkane metathesis, for a double C–C bond it is alkene metathesis (olefin metathesis), and for a triple C–C bond it is alkyne metathesis.

High-temperature reactions

Cracking

Dehydrogenation

Pyrolysis

Combustion

Combustion of hydrocarbons is currently the main source of the world's energy for

power plants
.

Common properties of hydrocarbons are the facts that they produce steam, carbon dioxide and heat during combustion and that oxygen is required for combustion to take place. The simplest hydrocarbon, methane, burns as follows:

In inadequate supply of air, carbon black and water vapour are formed:

And finally, for any

linear alkane
of n carbon atoms,

Partial oxidation characterizes the reactions of alkenes and oxygen. This process is the basis of rancidification and paint drying.

Benzene burns with sooty flame when heated in air:

Origin

Natural oil spring in Korňa, Slovakia

The vast majority of hydrocarbons found on

crude oil, petroleum, coal, and natural gas. Since thousands of years they have been exploited and used for a vast range of purposes.[10] Petroleum (lit.'rock oil') and coal are generally thought to be products of decomposition of organic matter. Coal, in contrast to petroleum, is richer in carbon and poorer in hydrogen. Natural gas is the product of methanogenesis.[11][12]

A seemingly limitless variety of compounds comprise petroleum, hence the necessity of refineries. These hydrocarbons consist of saturated hydrocarbons, aromatic hydrocarbons, or combinations of the two. Missing in petroleum are alkenes and alkynes. Their production requires refineries. Petroleum-derived hydrocarbons are mainly consumed for fuel, but they are also the source of virtually all synthetic organic compounds, including plastics and pharmaceuticals. Natural gas is consumed almost exclusively as fuel. Coal is used as a fuel and as a reducing agent in metallurgy.

A small fraction of hydrocarbon found on earth, and all currently known hydrocarbon found on other planets and moons, is thought to be abiological.[13]

Hydrocarbons such as ethylene, isoprene, and monoterpenes are emitted by living vegetation.[14]

Some hydrocarbons also are widespread and abundant in the Solar System. Lakes of liquid methane and ethane have been found on Titan, Saturn's largest moon, as confirmed by the Cassini–Huygens space probe.[15] Hydrocarbons are also abundant in nebulae forming polycyclic aromatic hydrocarbon compounds.[16]

Environmental impact

Burning hydrocarbons as fuel, which produces

global warming
. Hydrocarbons are introduced into the environment through their extensive use as fuels and chemicals as well as through leaks or accidental spills during exploration, production, refining, or transport of fossil fuels. Anthropogenic hydrocarbon contamination of soil is a serious global issue due to contaminant persistence and the negative impact on human health.[17]

Mechanisms involved in hydrocarbon phytoremediation[18]

When soil is contaminated by hydrocarbons, it can have a significant impact on its microbiological, chemical, and physical properties. This can serve to prevent, slow down or even accelerate the growth of vegetation depending on the exact changes that occur. Crude oil and natural gas are the two largest sources of hydrocarbon contamination of soil.[19]

Bioremediation

Bioremediation of hydrocarbon from soil or water contaminated is a formidable challenge because of the chemical inertness that characterize hydrocarbons (hence they survived millions of years in the source rock). Nonetheless, many strategies have been devised, bioremediation being prominent. The basic problem with bioremediation is the paucity of enzymes that act on them. Nonetheless, the area has received regular attention.[20] Bacteria in the gabbroic layer of the ocean's crust can degrade hydrocarbons; but the extreme environment makes research difficult.[21] Other bacteria such as Lutibacterium anuloederans can also degrade hydrocarbons.[22] Mycoremediation or breaking down of hydrocarbon by mycelium and mushrooms is possible.[23][24]

Safety

Hydrocarbons are generally of low toxicity, hence the widespread use of gasoline and related volatile products. Aromatic compounds such as benzene and toluene are narcotic and chronic toxins, and benzene in particular is known to be carcinogenic. Certain rare polycyclic aromatic compounds are carcinogenic. Hydrocarbons are highly

flammable
.

See also

References