Ikaite

Source: Wikipedia, the free encyclopedia.
Ikaite
Specific gravity
1.83
Optical propertiesBiaxial (−)[3]
Refractive indexnα = 1.455
nβ = 1.538
nγ = 1.545[4]
Birefringenced = 0.090
Other characteristicsDecomposes into water and calcite above 8 °C[3]
References[2]

Ikaite is the mineral name for the hexahydrate of calcium carbonate, CaCO3·6H2O. Ikaite tends to form very steep or spiky pyramidal crystals, often radially arranged, of varied sizes from thumbnail size aggregates to gigantic salient spurs. It is only found in a metastable state and decomposes rapidly by losing most of its water content once removed from near-freezing water. This "melting mineral" is more commonly known through its pseudomorphs.

Distribution

It is usually considered a rare mineral, but this is likely due to difficulty in preserving samples. It was first discovered in nature by the Danish

micrometers in sea ice in the Weddell Sea and throughout fast ice off Adélie Land, Antarctica. In addition, ikaite can also form large crystals within sediment that grow to macroscopic size, occasionally with good crystal form. There is strong evidence that some of these marine deposits are associated with cold seeps.[13] Ikaite has also been reported as a cryogenic deposit in caves where it precipitates from freezing carbonate-rich water.[14]

Structure

Ikaite crystallizes in the

monoclinic crystal system in space group C2/c with lattice parameters a~8.87A, b~8.23A, c~11.02A, β~110.2°.[15][16] The structure of ikaite consists of an ion pair of (Ca2+CO32−)0 surrounded by a cage of hydrogen-bonded water molecules which serve to isolate one ion pair from another.[17]

Ion pair (Ca2+CO32−)0 and hydration cage. Part of the crystal structure of ikaite. Ca (blue) is in dodecahedral coordination with O atoms (red) of the carbonate (black planar) and water molecules, while hydrogen bonds (dotted) between H-atoms (yellow) of the water molecules to the O-atoms of the carbonate ion exist.[15][17]

Stability

Synthetic ikaite was discovered in the nineteenth century in a study by Pelouze.

metastable.[19][20] Nevertheless, as it appears to be at least moderately common in nature, it is clear that the conditions for metastable nucleation and growth cannot be too restrictive. Cold water is certainly required for formation, and nucleation inhibitors like phosphate ions for the growth of anhydrous calcium carbonate phases, such as calcite, aragonite, and vaterite probably aid its formation and preservation. It is thought that perhaps the structure of calcium carbonate in a concentrated aqueous solution also consists of an ion pair, and that this is why ikaite readily nucleates at low temperatures, outside of its thermodynamic stability range. When removed from its natural cold water environment, ikaite rapidly disintegrates into monohydrocalcite
or anhydrous calcium carbonate phases and water, earning the nickname of the melting mineral.

Pseudomorphs

The presence of ikaite may be recorded through geological time through the presence of pseudomorphs of other calcium carbonate phases after it.[21] Although it can be hard to uniquely define the original mineral for every specimen, there appears to be good evidence for ikaite as the precursor for the majority of the following locality names of pseudomorphs:

  • Glendonite, after type locality, Glendon, New South Wales, Australia.
  • Thinolite, (Gr. Thinos = shore) found in the tufa of Mono Lake, California, US[22][23]
  • Jarrowite, Jarrow, Northumberland, UK[24][25]
  • Fundylite, Bay of Fundy, Nova Scotia, Canada
  • Gersternkorner, (Ger. = Barleycorn)
  • Gennoishi, (Jp. = hammerstones)[26]
  • Molekryds, (Dan. = Mole Cross), Mors Island, Jutland, Denmark
  • Pseudogaylussite (from semblance to Gaylussite)
  • White Sea hornlets, White Sea and Kola peninsula.

Ikaite or its

marine,[27] freshwater, and estuarine environments.[28]

Images of thinolite pseudomorphs taken from ES Dana (1884).[23]

The common ingredient appears to be cold temperatures, although the presence of traces of other chemicals such as nucleation inhibitors for anhydrous calcium carbonate may also be required. It has also been reported as forming in winter on Hokkaido at a saline spring.

Since cold water can be found at depth in the oceans even in the tropics, ikaite can form at all latitudes. However, the presence of ikaite pseudomorphs can be used as a

paleothermometry representing water near freezing conditions.[29][30]

Thinolite deposits

Thinolite is an unusual form of calcium carbonate found on the shore (Greek: thinos = shore) of Mono Lake, California. This and other lakes now largely in the desert or semi-desert environments of the southwestern US were part of a larger post-glacial lake that covered much of the region near the end of the last glaciation. It is thought that at this time, conditions similar to that of the Ikka fjord allowed for the growth of massive ikaite.

Isotope geochemistry

Isotope geochemistry can reveal information about the origin of the elements that make up minerals. The isotopic composition of ikaite and the pseudomorphs is actively studied.[31] Studies of the ratio of 13C to 12C in ikaite relative to a natural, standard ratio can help to determine the origin of the carbon pool (organic/inorganic) which was consumed to form ikaite.[32] Some studies have shown that oxidizing methane is the source of both modern day ikaite and glendonites in high-latitude marine sediments. Similarly the ratio of 18O to 16O, which varies in nature with temperature and latitude, can be used to show that glendonites were formed in waters very close to the freezing point, in agreement with the observed formation of ikaite.

References

  1. S2CID 235729616
    .
  2. ^ a b Mineralienatlas.
  3. ^ a b Ikaite. Webmineral.
  4. ^ Ikaite. Mindat.
  5. (PDF) on 2014-05-25. Retrieved 2013-02-26.
  6. .
  7. .
  8. S2CID 4396798.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  9. ^
    doi:10.1306/042800710176.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  10. S2CID 27836966.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  11. doi:10.1016/S0025-3227(03)00354-2.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  12. S2CID 14010315.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  13. doi:10.1016/0016-7037(93)90339-X.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  14. ^ Ekaterina Bazarova, Alexander Kononov and Oksana Gutareva (2016). Cryogenic Mineral Formations in the Okhotnichya Cave in the primorsky Mountain Ridge (Western Baikal Region, Russia), Eurospeleo Magazine 3: 47–59.
  15. ^ .
  16. doi:10.1524/zkri.1983.163.3-4.227.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  17. ^ .
  18. ^ Pelouze, M.J. (1865). "Sur une combinaison nouvelle d'eau et de carbonate de chaux". C. R. Acad. Sci. 60: 429–431.
  19. S2CID 140724494.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )
  20. .
  21. ^ Kaplan, M.E. (1979). "Calcite pseudomorphs (pseudogaylusite, jarrowite, thinolite, glendonite, gennoishi) in sedimentary rocks. The origin of pseudomorphs (in Russian)". Lithology and Mineral Resources. 5: 125–141.
  22. .
  23. ^ a b E.S. Dana (1884). "A crystallographic study of the thinolite of Lake Lahontan". U.S. Geological Survey Bulletin (12): 429–450.
  24. ^ Browell, E. J. J. (1860). "Description and analysis of an undescribed mineral from Jarrow Slake". Tyneside Naturalists Field Club. V: 103–104.
  25. .
  26. .
  27. .
  28. ^ Kennedy,G.L.; Hopkins, D.M.; Pickthorn, W.J. (1987). "Ikaite, the glendonite precursor, in estuarine sediments at Barrow, Arctic Alaska". Annual Meeting Abstract Program. 9. Geological Society of America: 725. {{cite journal}}: Cite journal requires |journal= (help)
  29. S2CID 101559852
    .
  30. .
  31. .
  32. S2CID 128872028.{{cite journal}}: CS1 maint: multiple names: authors list (link
    )

Further reading

External links

This page is based on the copyrighted Wikipedia article: Ikaite. Articles is available under the CC BY-SA 3.0 license; additional terms may apply.Privacy Policy