Impact of nanotechnology

Source: Wikipedia, the free encyclopedia.
(Redirected from
Implications of nanotechnology
)

The impact of

ethical, mental, legal and environmental
applications, to fields such as engineering, biology, chemistry, computing, materials science, and communications.

Major benefits of nanotechnology include improved manufacturing methods, water purification systems, energy systems, physical enhancement, nanomedicine, better food production methods, nutrition and large-scale infrastructure auto-fabrication.[1] Nanotechnology's reduced size may allow for automation of tasks which were previously inaccessible due to physical restrictions, which in turn may reduce labor, land, or maintenance requirements placed on humans.

Potential risks include environmental, health, and safety issues; transitional effects such as displacement of traditional industries as the products of nanotechnology become dominant, which are of concern to privacy rights advocates. These may be particularly important if potential negative effects of nanoparticles are overlooked.

Whether

UK,[2] and more recently in Canada, as well as for all food certified to Demeter International standards[3]

Overview

The presence of nanomaterials (materials that contain nanoparticles) is not in itself a threat. It is only certain aspects that can make them risky, in particular their mobility and their increased reactivity. Only if certain properties of certain nanoparticles were harmful to living beings or the environment would we be faced with a genuine hazard. In this case it can be called nanopollution.

In addressing the health and environmental impact of nanomaterials we need to differentiate between two types of nanostructures: (1) Nanocomposites, nanostructured surfaces and nanocomponents (electronic, optical, sensors etc.), where nanoscale particles are incorporated into a substance, material or device (“fixed” nano-particles); and (2) “free” nanoparticles, where at some stage in production or use individual nanoparticles of a substance are present. These free nanoparticles could be nanoscale species of elements, or simple compounds, but also complex compounds where for instance a nanoparticle of a particular element is coated with another substance (“coated” nanoparticle or “core-shell” nanoparticle).

There seems to be consensus that, although one should be aware of materials containing fixed nanoparticles, the immediate concern is with free nanoparticles.

Nanoparticles are very different from their everyday counterparts, so their adverse effects cannot be derived from the known toxicity of the macro-sized material. This poses significant issues for addressing the health and environmental impact of free nanoparticles.

To complicate things further, in talking about nanoparticles it is important that a powder or liquid containing nanoparticles almost never be monodisperse, but contain instead a range of particle sizes. This complicates the experimental analysis as larger nanoparticles might have different properties from smaller ones. Also, nanoparticles show a tendency to aggregate, and such aggregates often behave differently from individual nanoparticles.

Health impact

A video on the health and safety implications of nanotechnology

The health impacts of

human health. As nanotechnology is an emerging field, there is great debate regarding to what extent nanotechnology will benefit or pose risks for human health. Nanotechnology's health impacts can be split into two aspects: the potential for nanotechnological innovations to have medical applications to cure disease, and the potential health hazards posed by exposure to nanomaterials
.

In regards to the current global pandemic, researchers, engineers and medical professionals are using an extremely developed collection of nano science and nanotechnology approaches to explore the ways it could potentially help the medical, technical, and scientific communities to help fight the pandemic.[4]

Medical applications

Nanomedicine is the medical application of nanotechnology.[5] The approaches to nanomedicine range from the medical use of nanomaterials, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology. Nanomedicine seeks to deliver a valuable set of research tools and clinically helpful devices in the near future.[6][7] The National Nanotechnology Initiative expects new commercial applications in the pharmaceutical industry that may include advanced drug delivery systems, new therapies, and in vivo imaging.[8] Neuro-electronic interfaces and other nanoelectronics-based sensors are another active goal of research. Further down the line, the speculative field of molecular nanotechnology believes that cell repair machines could revolutionize medicine and the medical field.

Nanomedicine research is directly funded, with the US National Institutes of Health in 2005 funding a five-year plan to set up four nanomedicine centers. In April 2006, the journal Nature Materials estimated that 130 nanotech-based drugs and delivery systems were being developed worldwide.[9] Nanomedicine is a large industry, with nanomedicine sales reaching $6.8 billion in 2004. With over 200 companies and 38 products worldwide, a minimum of $3.8 billion in nanotechnology R&D is being invested every year.[10] As the nanomedicine industry continues to grow, it is expected to have a significant impact on the economy.

Health hazards

Nanotoxicology is the field which studies potential health risks of nanomaterials. The extremely small size of nanomaterials means that they are much more readily taken up by the human body than larger sized particles. How these nanoparticles behave inside the organism is one of the significant issues that needs to be resolved. The behavior of nanoparticles is a function of their size, shape and surface reactivity with the surrounding tissue. For example, they could cause overload on phagocytes, cells that ingest and destroy foreign matter, thereby triggering stress reactions that lead to inflammation and weaken the body's defense against other pathogens.

Apart from what happens if non-degradable or slowly degradable nanoparticles accumulate in organs, another concern is their potential interaction with biological processes inside the body: because of their large surface, nanoparticles on exposure to tissue and fluids will immediately adsorb onto their surface some of the macromolecules they encounter. This may, for instance, affect the regulatory mechanisms of enzymes and other proteins. The large number of variables influencing toxicity means that it is difficult to generalise about health risks associated with exposure to nanomaterials – each new nanomaterial must be assessed individually and all material properties must be taken into account. Health and environmental issues combine in the workplace of companies engaged in producing or using nanomaterials and in the laboratories engaged in nanoscience and nanotechnology research. It is safe to say that current workplace exposure standards for dusts cannot be applied directly to nanoparticle dusts.

The

The National Personal Protective Technology Laboratory of NIOSH, studies investigating the filter penetration of nanoparticles on NIOSH-certified and EU marked respirators, as well as non-certified dust masks have been conducted.[12] These studies found that the most penetrating particle size range was between 30 and 100 nanometers, and leak size was the largest factor in the number of nanoparticles found inside the respirators of the test dummies.[13][14]

Other properties of nanomaterials that influence toxicity include: chemical composition, shape, surface structure, surface charge, aggregation and solubility,[15] and the presence or absence of functional groups of other chemicals.[16] The large number of variables influencing toxicity means that it is difficult to generalise about health risks associated with exposure to nanomaterials – each new nanomaterial must be assessed individually and all material properties must be taken into account.

Literature reviews have been showing that release of engineered nanoparticles and incurred personal exposure can happen during different work activities.[17][18][19] The situation alerts regulatory bodies to necessitate prevention strategies and regulations at nanotechnology workplaces.

Environmental impact

The environmental impact of nanotechnology is the possible effects that the use of nanotechnological materials and devices will have on

the environment.[20] As nanotechnology is an emerging field, there is debate regarding to what extent industrial and commercial use of nanomaterials
will affect organisms and ecosystems.

Nanotechnology's environmental impact can be split into two aspects: the potential for nanotechnological innovations to help improve the environment, and the possibly novel type of pollution that nanotechnological materials might cause if released into the environment.

Environmental applications