Inclinometer

Source: Wikipedia, the free encyclopedia.
Drawing of an inclinometer, Museo Galileo, Florence
Measuring slope with a clinometer

An inclinometer or clinometer is an

astrolabe is an example of an inclinometer that was used for celestial navigation and location of astronomical objects from ancient times to the Renaissance
.

A tilt sensor can measure the tilting in often two axes of a reference plane in two axes. In contrast, a full motion would use at least three axes and often additional sensors. One way to measure tilt angle with reference to the earth's ground plane, is to use an

turn and bank indicators
is sometimes referred to as an inclinometer.

History

The Well's clinometer

Inclinometers include examples such as Well's in-clinometer, the essential parts of which are a flat side, or base, on which it stands, and a hollow disc just half filled with some heavy liquid. The glass face of the disc is surrounded by a graduated scale that marks the angle at which the surface of the liquid stands, with reference to the flat base. The zero line is parallel to the base, and when the liquid stands on that line, the flat side is horizontal; the 90 degree is perpendicular to the base, and when the liquid stands on that line, the flat side is perpendicular or plumb. Intervening angles are marked, and, with the aid of simple

conversion tables
, the instrument indicates the rate of fall per set distance of horizontal measurement, and set distance of the sloping line.

Al-Biruni, a Persian polymath, once wanted to measure the height of the sun. He lacked the necessary equipment to measure this height. He was forced to create a calibrated arc on the back of a counting board, which he then used as a makeshift quadrant with the help of a plumb line. He determined the location's latitude using the measurements taken with this rudimentary tool. This quadrant was most likely an inclinometer based on the quarter-circle panel.[1]

The

crosshair) with the reflection of the bubble in the spirit level
of the inclinometer when the line of sight is at the angle set on the inclinometer.

One of the more famous inclinometer installations was on the panel of the Ryan NYP "The Spirit of St. Louis"—in 1927 Charles Lindbergh chose the lightweight Rieker Inc P-1057 Degree Inclinometer[2] to give him climb and descent angle information.

Uses

Measuring the distance across a stream
Measuring a building's height

Hand-held clinometers are used for a variety of surveying and measurement tasks. In land surveying and mapping, a clinometer can provide a rapid measurement of the slope of a geographic feature, or used for cave survey. In prospecting for minerals, clinometers are used to measure the strike and dip of geologic formations. In forestry, tree height measurement can be done with a clinometer using standardized methods including triangulation. Major artillery guns may have an associated clinometer used to facilitate aiming of shells over long distances.

Permanently-installed tiltmeters are emplaced at major earthworks such as dams to monitor the long-term stability of the structure.

Factors which influence the use of inclinometers

(Overall accuracy varies depending on the type of tilt sensor (or inclinometer) and technology used)

  • Gravity
  • Temperature (drift), zero offset, linearity, vibration, shock, cross-axis sensitivity, acceleration/deceleration.
  • A clear line of sight between the user and the measured point is needed.
  • A well defined object is required to obtain the maximum precision.
  • The angle measurement precision and accuracy is limited to slightly better than one arcsec.

Accuracy

Certain highly sensitive electronic inclinometer sensors can achieve an output resolution to 0.0001°; depending on the technology and angle range, it may be limited to 0.01°. An inclinometer sensor's true or absolute accuracy (which is the combined total error), however, is a combination of initial sets of sensor zero offset and sensitivity, sensor linearity, hysteresis, repeatability, and the temperature drifts of zero and sensitivity—electronic inclinometers accuracy can typically range from ±0.01–2° depending on the sensor and situation. Typically in room ambient conditions the accuracy is limited to the sensor linearity specification.

  • Blériot Monoplane Inclinometer
    Blériot Monoplane Inclinometer
  • Nautical wall inclinometer
    Nautical wall inclinometer
  • Simple clinometer
    Simple clinometer
  • Digital protractor
    Digital protractor
  • Clinometer designed to enable indirect fire capability with a Vickers machine gun circa 1918
    Clinometer designed to enable indirect fire capability with a Vickers machine gun circa 1918
  • Mechanical spirit level clinometer with micrometer adjustment
    Mechanical spirit level clinometer with micrometer adjustment

Sensor technology

Tilt sensors and inclinometers generate an

artificial horizon
and measure angular tilt with respect to this horizon. They are used in cameras, aircraft flight controls, automobile security systems, and speciality switches and are also used for platform leveling, boom angle indication, and in other applications requiring measurement of tilt.

Important specifications to consider for tilt sensors and inclinometers are the tilt angle range and the number of axes. The axes are usually, but not always,

orthogonal
. The tilt angle range is the range of desired linear output.

Common implementations of tilt sensors and inclinometers are accelerometer, Liquid Capacitive, electrolytic, gas bubble in liquid, and pendulum.

Tilt sensor technology has also been implemented in video games. Yoshi's Universal Gravitation and Kirby Tilt 'n' Tumble are both built around a tilt sensor mechanism, which is built into the cartridge. The PlayStation 3 and Wii game controllers also use tilt as a means to play video games.

Inclinometers are also used in civil engineering, for example, to measure the inclination of land to be built upon.

Some inclinometers provide an electronic interface based on

CANopen
profile (CiA 410). In this case, these inclinometers are compatible and partly interchangeable.

Two-axis digital inclinometer

Two-axis digital inclinometer

Traditional spirit levels and pendulum-based electronic leveling instruments are usually constrained by only single-axis and narrow tilt measurement range. However, most precision leveling, angle measurement, alignment and surface flatness profiling tasks essentially involve a two-dimensional surface plane angle rather than two independent orthogonal single-axis objects. Two-axis inclinometers that are built with

MEMS
tilt sensors provides simultaneous two-dimensional angle readings of a surface plane tangent to earth datum.

Typical advantages of using two-axis

MEMS
inclinometers over conventional single-axis "bubble" or mechanical leveling instruments may include:

  • Simultaneous measurement of two-dimensional (X-Y plane) tilt angles (i.e. pitch & roll), can eliminate tedious swapping back-and-forth experienced when using a single-axis level, for example to adjust machine footings to attain a precise leveling position.
  • Digital compensation and precise calibration for non-linearity, for example for operating temperature variation, resulting in higher accuracy over a wider measurement range.
  • The accelerometer sensors may generate numerical data in the form of vibration profiles to enable a machine installer to track and assess alignment quality in real-time and verify a structure's positional stability by comparing leveling profiles before and after it is set up.

Inclinometer with gyroscope

As inclinometers measure the angle of an object with respect to the force of gravity, external accelerations like rapid motions, vibrations or shocks will introduce errors in the tilt measurements. To overcome this problem, it is possible to use a gyroscope in addition to an accelerometer. Any of the abovementioned accelerations have a huge impact on the accelerometer, but a limited effect on the measured rotation rates of the gyroscope. An algorithm can combine both signals to get the best value out of each sensor. This way it is possible to separate the actual tilt angle from the errors introduced by external accelerations.[3]

Applications

Symbol used in geotechnical drawings

Inclinometers are used for:

Games

Nintendo used tilt sensor technology in five games for its Game Boy series of hand-held game systems. The tilt sensor allows players to control aspects of the game by twisting the game system. Games that use this feature:

Tilt sensors can also be found in game controllers such as the

Microsoft Sidewinder Freestyle Pro and Sony's PlayStation 3
controller.

However, unlike these other controllers in which the tilt sensor serves as a supplement to normal control methods, it serves as one of the central features of Nintendo's Wii Remote and the Nunchuk attachment. Along with accelerometers, the tilt sensors are a primary method of control in most Wii games.

It is now being used in many different aspects, instead of just games like motocrossing and flight simulators. It can be used for sport gaming, first-person shooter, and other odd uses such as in WarioWare: Smooth Moves

Another example is a virtual version of a wooden maze with obstacles in which you have to maneuver a ball by tilting the maze. A homebrew tilt sensor interface was made for the Palm (PDA).

See also

References

  1. S2CID 119230163
    .
  2. ^ "Rieker Inc P-1057 Degree Inclinometer". riekerinc.com. Retrieved 7 April 2018.
  3. ^ POSITAL. "MEMS Inclinometer from POSITAL: How do they work?". Posital. Retrieved 2017-01-04.
  4. ^ "Tracker Freedom® Wireless Dual Inclinometry | Tracker Freedom® Wireless Instruments | Products and Solutions". Archived from the original on 2013-07-03. Retrieved 2013-07-19.
  5. ^ "Inclinometer – Digital Inclinometers – J-Tech Dualer IQ 12-1059". quickmedical. Archived from the original on 8 April 2018. Retrieved 7 April 2018.
  6. ^ "New Tilt Sensor Helps to Prevent Unsafe Working Conditions". www.frederickscompany.com. Archived from the original on 23 September 2016.

External links