ISRO

Coordinates: 13°2′7″N 77°34′16″E / 13.03528°N 77.57111°E / 13.03528; 77.57111
Source: Wikipedia, the free encyclopedia.
(Redirected from
Indian Space Research Organization
)

Indian Space Research Organisation
Bhāratīya Antarikṣa Anusandhān Saṅgaṭhan
Space agency
JurisdictionDepartment of Space
HeadquartersBangalore, Karnataka, India
13°2′7″N 77°34′16″E / 13.03528°N 77.57111°E / 13.03528; 77.57111
Sreedhara Somanath
Primary spaceports
OwnerGovernment of India
Employees19,247 (as on 1 March 2022)[1]
Annual budgetIncrease 13,042 crore (US$1.6 billion)[2]
Websitewww.isro.gov.in Edit this at Wikidata

The Indian Space Research Organisation (ISRO

Chairman of ISRO also acts as the executive of DoS. ISRO is primarily responsible for performing tasks related to space-based operations, space exploration, international space cooperation and the development of related technologies.[4] ISRO is one of the six government space agencies in the world that possesses full launch capabilities, can deploy cryogenic engines, can launch extraterrestrial missions and operate a large fleet of artificial satellites.[5][6][b] ISRO is one of the four government space agencies to have soft landing (unmanned) capabilities.[7][c]

ISRO was previously known as the Indian National Committee for Space Research (INCOSPAR), set up under Jawaharlal Nehru on the suggestions of Dr. Vikram Sarabhai in 1962 recognising the need for space research. INCOSPAR grew and became ISRO in 1969, within the Department of Atomic Energy (DAE).[8] In 1972, the government of India set up a Space Commission and the DoS, bringing ISRO under it. The establishment of ISRO thus institutionalised space research activities in India.[9][10] It has since been managed by DoS, which also governs various other institutions in India in the domain of astronomy and space technology.[11]

ISRO built India's first satellite, Aryabhata, which was launched by the Soviet space agency Interkosmos in 1975.[12] In 1980, ISRO launched satellite RS-1 onboard SLV-3, making India the seventh country to be capable of undertaking orbital launches. SLV-3 was followed by ASLV, which was subsequently succeeded by the development of many medium-lift launch vehicles, rocket engines, satellite systems and networks enabling the agency to launch hundreds of domestic and foreign satellites and various deep space missions for space exploration.

ISRO has the world's largest constellation of remote-sensing satellites and operates the GAGAN and IRNSS (NavIC) satellite navigation systems. It has sent three missions to the Moon and one to Mars.

ISRO's programmes have played a significant role in the socio-economic development of India and have supported both civilian and military domains in various aspects including disaster management, telemedicine and navigation and reconnaissance missions. ISRO's spin-off technologies also have founded many crucial innovations for India's engineering and medical industries.[13]

History

Formative years

Vikram Sarabhai, Father of Indian space program.

Modern space research in India can be traced to the 1920s, when scientist

upper atmosphere.[15] These studies were done at research laboratories, universities, and independent locations.[15][16]

In 1950, the

Hyderabad. Space research was further encouraged by the government of India.[17] In 1957, the Soviet Union launched Sputnik 1 and opened up possibilities for the rest of the world to conduct a space launch.[17]

The Indian National Committee for Space Research (INCOSPAR) was set up in 1962 by Prime Minister Jawaharlal Nehru on the suggestion of Dr. Vikram Sarabhai.

H.G.S. Murthy, an IOFS officer, was appointed the first director of the Thumba Equatorial Rocket Launching Station,[20] where sounding rockets were fired, marking the start of upper atmospheric research in India.[21] An indigenous series of sounding rockets named Rohini was subsequently developed and started undergoing launches from 1967 onwards.[22] Waman Dattatreya Patwardhan
, another IOFS officer, developed the propellant for the rockets.

1970s and 1980s

Under the government of Indira Gandhi, INCOSPAR was superseded by ISRO. Later in 1972, a space commission and Department of Space (DoS) were set up to oversee space technology development in India specifically. ISRO was brought under DoS, institutionalising space research in India and forging the Indian space programme into its existing form.[9][11] India joined the Soviet Interkosmos programme for space cooperation[23] and got its first satellite Aryabhatta in orbit through a Soviet rocket.[12]

Efforts to develop an orbital launch vehicle began after mastering sounding rocket technology. The concept was to develop a launcher capable of providing sufficient velocity for a mass of 35 kg (77 lb) to enter

SLV-3 later had two more launches before discontinuation in 1983.[26] ISRO's Liquid Propulsion Systems Centre (LPSC) was set up in 1985 and started working on a more powerful engine, Vikas, based upon the French Viking.[27] Two years later, facilities to test liquid-fuelled rocket engines were established and development and testing of various rocket engines thrusters began.[28]

At the same time, another solid-fuelled rocket Augmented Satellite Launch Vehicle based upon SLV-3 was being developed, and technologies to launch satellites into geostationary orbit (GTO). ASLV had limited success and multiple launch failures; it was soon discontinued.[29] Alongside, technologies for the Indian National Satellite System of communication satellites[30] and the Indian Remote Sensing Programme for earth observation satellites[31] were developed and launches from overseas initiated. The number of satellites eventually grew and the systems were established as among the largest satellite constellations in the world, with multi-band communication, radar imaging, optical imaging and meteorological satellites.[32]

1990s

The arrival of PSLV in 1990s became a major boost for the Indian space programme. With the exception of its first flight in 1994 and two partial failures later, PSLV had a streak of more than 50 successful flights. PSLV enabled India to launch all of its

IRNSS which it is now expanding further.[39]

21st century

In 2003, when

GSLV rocket became operational, making India the sixth country to have full launch capabilities.[43] A new heavier-lift launcher LVM3 was introduced in 2014 for heavier satellites and future human space missions.[44]

On 23 August 2023, India achieved its first soft landing on an extraterrestrial body and became the first nation to successfully land a spacecraft near the lunar south pole with ISRO's Chandrayaan-3, the third Moon mission.[45] Indian moon mission, Chandrayaan-3 (translated as "mooncraft" in English), saw the successful soft landing of its Vikram lander at 6.04pm IST (1234 GMT) near the little-explored region of the Moon in a world's first for any space programme.[46] India then successfully launched its first sun probe, the Aditya-L1, aboard a PSLV on September 2.[47][48]

ISRO did not have an official logo until 2002. The one adopted consists of an orange arrow shooting upwards attached with two blue coloured satellite panels with the name of ISRO written in two sets of text, orange-coloured Devanagari on the left and blue-coloured English in the Prakrta typeface on the right.[49][50]

Goals and objectives

INCOSPAR
, ISRO's predecessor organization

As the national space agency of India, ISRO's purpose is the pursuit of all space-based applications such as research, reconnaissance, and communications. It undertakes the design and development of space rockets and satellites, and undertakes explores upper atmosphere and deep space exploration missions. ISRO has also incubated technologies in India's private space sector, boosting its growth.[51][52]

On the topic of the importance of a space programme to India as a developing nation, Vikram Sarabhai as INSCOPAR chair said in 1969:[53][54][55]

To us, there is no ambiguity of purpose. We do not have the fantasy of competing with the economically advanced nations in the exploration of the Moon or the planets or manned space-flight. But we are convinced that if we are to play a meaningful role nationally, and in the community of nations, we must be second to none in the application of advanced technologies to the real problems of man and society, which we find in our country. And we should note that the application of sophisticated technologies and methods of analysis to our problems is not to be confused with embarking on grandiose schemes, whose primary impact is for show rather than for progress measured in hard economic and social terms.

The former president of India and chairman of DRDO, A. P. J. Abdul Kalam, said:[56]

Very many individuals with myopic vision questioned the relevance of space activities in a newly independent nation which was finding it difficult to feed its population. But neither Prime Minister Nehru nor Prof. Sarabhai had any ambiguity of purpose. Their vision was very clear: if Indians were to play a meaningful role in the community of nations, they must be second to none in the application of advanced technologies to their real-life problems. They had no intention of using it merely as a means of displaying our might.

India's economic progress has made its space programme more visible and active as the country aims for greater self-reliance in space technology.[57] In 2008, India launched as many as 11 satellites, including nine from other countries, and went on to become the first nation to launch 10 satellites on one rocket.[57] ISRO has put into operation two major satellite systems: the Indian National Satellite System (INSAT) for communication services, and the Indian Remote Sensing Programme (IRS) satellites for management of natural resources.[30][32]

Organisation structure and facilities

The organisational structure of the Indian Department of Space

ISRO is managed by the DOS, which itself falls under the authority of the Space Commission and manages the following agencies and institutes:[58][59][60]

Research facilities

Facility Location Description
Vikram Sarabhai Space Centre Thiruvananthapuram The largest ISRO base is also the main technical centre and the venue for development of the
GSLV series.[62]
Liquid Propulsion Systems Centre
Bengaluru
The LPSC handles design, development, testing and implementation of liquid propulsion control packages, liquid stages and liquid engines for launch vehicles and satellites.
Mahendragiri.[62] The LPSC, Bengaluru also produces precision transducers.[63]
Physical Research Laboratory Ahmedabad Solar planetary physics, infrared astronomy, geo-cosmo physics, plasma physics, astrophysics, archaeology, and hydrology are some of the branches of study at this institute.;[62] it also operates the observatory at Udaipur.[62]
National Atmospheric Research Laboratory
Tirupati The NARL carries out fundamental and applied research in atmospheric and space sciences.[64]
Space Applications Centre Ahmedabad The SAC deals with the various aspects of the practical use of space technology.
satellite based telecommunications, surveying, remote sensing, meteorology, environment monitoring etc.[62] The SAC also operates the Delhi Earth Station, which is located in Delhi and is used for demonstration of various SATCOM experiments in addition to normal SATCOM operations.[65]
North-Eastern Space Applications Centre Shillong Providing developmental support to North East by undertaking specific application projects using remote sensing, GIS, satellite communication and conducting space science research.[66]

Test facilities

Facility Location Description
ISRO Propulsion Complex
Mahendragiri
Formerly called LPSC-Mahendragiri, was declared a separate centre. It handles testing and assembly of liquid propulsion control packages, liquid engines, and stages for launch vehicles and satellites.[62]

Construction and launch facilities

Facility Location Description
U R Rao Satellite Centre
Bengaluru
The venue of eight successful spacecraft projects is also one of the main satellite technology bases of ISRO. The facility serves as a venue for implementing indigenous spacecraft in India.[62] The satellites Aaryabhata, Bhaskara, APPLE, and IRS-1A were built at this site, and the IRS and INSAT satellite series are presently under development here. This centre was formerly known as ISRO Satellite Centre.[63]
Laboratory for Electro-Optics Systems
Bengaluru
The Unit of ISRO responsible for the development of altitude sensors for all satellites. The high precision optics for all cameras and payloads in all ISRO satellites are developed at this laboratory, located at Peenya Industrial Estate, Bengaluru.
Satish Dhawan Space Centre Sriharikota With multiple sub-sites the Sriharikota island facility acts as a launching site for India's satellites.[62] The Sriharikota facility is also the main launch base for India's sounding rockets.[63] The centre is also home to India's largest Solid Propellant Space Booster Plant (SPROB) and houses the Static Test and Evaluation Complex (STEX).[63] The Second Vehicle Assembly Building (SVAB) at Sriharikota is being realised as an additional integration facility, with suitable interfacing to a second launch pad.[67][68]
Thumba Equatorial Rocket Launching Station Thiruvananthapuram TERLS is used to launch sounding rockets.[69]

Tracking and control facilities

Facility Location Description
Indian Deep Space Network (IDSN)
Bengaluru
This network receives, processes, archives and distributes the spacecraft health data and payload data in real-time. It can track and monitor satellites up to very large distances, even beyond the Moon.[70]
National Remote Sensing Centre
Hyderabad
The NRSC applies remote sensing to manage natural resources and study aerial surveying.
Shadnagar it also has training facilities at Dehradun acting as the Indian Institute of Remote Sensing.[62]
ISRO Telemetry, Tracking and Command Network
Bengaluru (headquarters) and a number of ground stations throughout India and the world.[65]
Software development, ground operations, Tracking Telemetry and Command (TTC), and support is provided by this institution.[62] ISTRAC has Tracking stations throughout the country and all over the world in Port Louis (Mauritius), Bearslake (Russia), Biak (Indonesia) and Brunei.[71]
Master Control Facility
Hassan
Geostationary satellite orbit raising, payload testing, and in-orbit operations are performed at this facility.[72] The MCF has Earth stations and the Satellite Control Centre (SCC) for controlling satellites.[72] A second MCF-like facility named 'MCF-B' is being constructed at Bhopal.[72]
Space Situational Awareness Control Centre
Bengaluru
A network of telescopes and radars are being set up under the Directorate of Space Situational Awareness and Management to monitor space debris and to safeguard space-based assets. The new facility will end ISRO's dependence on
Norad. The sophisticated multi-object tracking radar installed in Nellore, a radar in Northeast India and telescopes in Thiruvananthapuram, Mount Abu and North India will be part of this network.[73][74]

Human resource development

Facility Location Description
Indian Institute of Remote Sensing (IIRS) Dehradun The Indian Institute of Remote Sensing (IIRS) is a premier training and educational institute set up for developing trained professionals (P.G. and PhD level) in the field of remote sensing, geoinformatics and GPS technology for natural resources, environmental and disaster management. IIRS is also executing many R&D projects on remote sensing and GIS for societal applications. IIRS also runs various outreach programmes (Live & Interactive and e-learning) to build trained skilled human resources in the field of remote sensing and geospatial technologies.[75]
Indian Institute of Space Science and Technology (IIST) Thiruvananthapuram The institute offers undergraduate and graduate courses in Aerospace Engineering, Electronics and Communication Engineering (Avionics), and Engineering Physics. The students of the first three batches of IIST were inducted into different ISRO centres.[76]
Development and Educational Communication Unit Ahmedabad The centre works for education, research, and training, mainly in conjunction with the
INSAT programme.[62] The main activities carried out at DECU include GRAMSAT and EDUSAT projects.[63] The Training and Development Communication Channel (TDCC) also falls under the operational control of the DECU.[65]
Space Technology Incubation Centres (S-TICs) at: Jalandhar, Bhopal, Agartala, Rourkela, Nagpur The S-TICs opened at premier technical universities in India to promote startups to build applications and products in tandem with the industry and would be used for future space missions. The S-TIC will bring the industry, academia and ISRO under one umbrella to contribute towards research and development (R&D) initiatives relevant to the Indian Space Programme.[79]
Space Innovation Centre at: Burla, Sambalpur In line with its ongoing effort to promote R&D in space technology through industry as well as academia, ISRO in collaboration with Veer Surendra Sai University of Technology (VSSUT), Burla, Sambalpur, Odisha, has set up Veer Surendra Sai Space Innovation Centre (VSSSIC) within its campus at Sambalpur. The objective of its Space Innovation Research Lab is to promote and encourage the students in research and development in the area of space science and technology at VSSUT and other institutes within this region.[80][81]
Regional Academy Centre for Space (RAC-S) at:
Mangaluru, Patna
All these centres are set up in tier-2 cities to create awareness, strengthen academic collaboration and act as incubators for space technology, space science and space applications. The activities of RAC-S will maximise the use of research potential, infrastructure, expertise, experience and facilitate capacity building.

Antrix Corporation Limited (Commercial Wing)

Set up as the marketing arm of ISRO, Antrix's job is to promote products, services and technology developed by ISRO.[83][84]

NewSpace India Limited (Commercial Wing)

Set up for marketing spin-off technologies, tech transfers through industry interface and scale up industry participation in the space programmes.[85]

Space Technology Incubation Centre

ISRO has opened Space Technology Incubation Centres (S-TIC) at premier technical universities in India which will incubate startups to build applications and products in tandem with the industry and for use in future space missions. The S-TIC will bring the industry, academia and ISRO under one umbrella to contribute towards research and development (R&D) initiatives relevant to the Indian Space Programme. S-TICs are at the National Institute of Technology, Agartala serving for east region, National Institute of Technology, Jalandhar for the north region, and the National Institute of Technology, Tiruchirappalli for the south region of India.[79]

Advanced Space Research Group

Similar to NASA's CalTech-operated Jet Propulsion Laboratory, ISRO and the Indian Institute of Space Science and Technology (IIST) implemented a joint working framework in 2021, wherein ISRO will approve all short-, medium- and long-term space research projects of common interest between the two. In return, an Advanced Space Research Group (ASRG) formed at IIST under the guidance of the EOC will have full access to ISRO facilities. This was done with the aim of "transforming" the IIST into a premier space research and engineering institute with the capability of leading future space exploration missions for ISRO.[86][87]

Directorate of Space Situational Awareness and Management

To reduce dependency on

North American Aerospace Defense Command (NORAD) for space situational awareness and protect the civilian and military assets, ISRO is setting up telescopes and radars in four locations to cover each direction. Leh, Mount Abu and Ponmudi were selected to station the telescopes and radars that will cover North, West and South of Indian territory. The last one will be in Northeast India to cover the entire eastern region. Satish Dhawan Space Centre at Sriharikota already supports Multi-Object Tracking Radar (MOTR).[88] All the telescopes and radars will come under Directorate of Space Situational Awareness and Management (DSSAM) in Bengaluru. It will collect tracking data on inactive satellites and will also perform research on active debris removal, space debris modelling and mitigation.[89]

For early warning, ISRO began a ₹400 crore (4 billion; US$53 million) project called Network for Space Object Tracking and Analysis (NETRA). It will help the country track atmospheric entry, intercontinental ballistic missile (ICBM), anti-satellite weapon and other space-based attacks. All the radars and telescopes will be connected through NETRA. The system will support remote and scheduled operations. NETRA will follow the Inter-Agency Space Debris Coordination Committee (IASDCC) and United Nations Office for Outer Space Affairs (UNOSA) guidelines. The objective of NETRA is to track objects at a distance of 36,000 kilometres (22,000 mi) in GTO.[73][90]

India signed a memorandum of understanding on the Space Situational Awareness Data Sharing Pact with the US in April 2022.[91][92] It will enable Department of Space to collaborate with the Combined Space Operation Center (CSpOC) to protect the space-based assets of both nations from natural and man-made threats.[93] On 11 July 2022, ISRO System for Safe and Sustainable Space Operations Management (IS4OM) at Space Situational Awareness Control Centre, in Peenya was inaugurated by Jitender Singh. It will help provide information on on-orbit collision, fragmentation, atmospheric re-entry risk, space-based strategic information, hazardous asteroids, and space weather forecast. IS4OM will safeguard all the operational space assets, identify and monitor other operational spacecraft with close approaches which have overpasses over Indian subcontinent and those which conduct intentional manoeuvres with suspicious motives or seek re-entry within South Asia.[94]

ISRO System for Safe and Sustainable Space Operations Management

On 7 March 2023, ISRO System for Safe and Sustainable Space Operations Management (IS4OM) conducted successful controlled re-entry of decommissioned satellite Megha-Tropiques after firing four on-board 11 Newton thrusters for 20 minutes each. A series of 20 manoeuvres were performed since August 2022 by spending 120 kg fuel. The final telemetry data confirmed disintegtration over Pacific Ocean. It was part of a compliance effort following international guidelines on space debris mitigation.[95]

Other facilities

General satellite programmes