Insect
Insect Temporal range:
| |
---|---|
Diversity of insects from different orders. | |
Scientific classification ![]() | |
Kingdom: | Animalia |
Phylum: | Arthropoda |
Clade: | Pancrustacea |
Subphylum: | Hexapoda |
Class: | Insecta Linnaeus, 1758 |
Subgroups | |
Synonyms | |
|
Insects (from
Nearly all insects hatch from eggs. Insect growth is constrained by the inelastic exoskeleton and development involves a series of molts. The immature stages often differ from the adults in structure, habit and habitat, and can include a usually immobile pupal stage in those groups that undergo four-stage metamorphosis. Insects that undergo three-stage metamorphosis lack a pupal stage and adults develop through a series of nymphal stages.[6] The higher level relationship of the insects is unclear. Fossilized insects of enormous size have been found from the Paleozoic Era, including giant dragonflies with wingspans of 55 to 70 cm (22 to 28 in). The most diverse insect groups appear to have coevolved with flowering plants.
Adult insects typically move about by walking, flying, or sometimes swimming. As it allows for rapid yet stable movement, many insects adopt a tripedal gait in which they walk with their legs touching the ground in alternating triangles, composed of the front and rear on one side with the middle on the other side. Insects are the only invertebrate group with members able to achieve sustained powered flight, and all flying insects derive from one common ancestor. Many insects spend at least part of their lives under water, with larval adaptations that include gills, and some adult insects are aquatic and have adaptations for swimming. Some species, such as water striders, are capable of walking on the surface of water. Insects are mostly solitary, but some, such as certain bees, ants and termites, are social and live in large, well-organized colonies. Some insects, such as earwigs, show maternal care, guarding their eggs and young. Insects can communicate with each other in a variety of ways. Male moths can sense the pheromones of female moths over great distances. Other species communicate with sounds: crickets stridulate, or rub their wings together, to attract a mate and repel other males. Lampyrid beetles communicate with light.
Humans regard certain insects as
Etymology
The word insect comes from the
In common parlance, insects are also called bugs, though this term usually includes all terrestrial arthropods.
Definitions
The precise definition of the taxon Insecta and the equivalent English name "insect" varies; three alternative definitions are shown in the table.
Group | Alternative definitions | ||
---|---|---|---|
Collembola (springtails) |
Insecta sensu lato = Hexapoda |
"Entognatha" | "Apterygota" (wingless hexapods) |
Protura (coneheads) | |||
Diplura (two-pronged bristletails) | |||
Archaeognatha (jumping bristletails) | Insecta sensu stricto = Ectognatha | ||
Zygentoma (silverfish) | |||
Pterygota (winged insects) | Insecta sensu strictissimo |
In the broadest circumscription, Insecta sensu lato consists of all hexapods.[17][18] Traditionally, insects defined in this way were divided into "Apterygota" (the first five groups in the table)—the wingless insects—and Pterygota—the winged and secondarily wingless insects.[19] However, modern phylogenetic studies have shown that "Apterygota" is not monophyletic,[20] and so does not form a good taxon. A narrower circumscription restricts insects to those hexapods with external mouthparts, and comprises only the last three groups in the table. In this sense, Insecta sensu stricto is equivalent to Ectognatha.[17][20] In the narrowest circumscription, insects are restricted to hexapods that are either winged or descended from winged ancestors. Insecta sensu strictissimo is then equivalent to Pterygota.[21] For the purposes of this article, the middle definition is used; insects consist of two wingless taxa, Archaeognatha (jumping bristletails) and Zygentoma (silverfish), plus the winged or secondarily wingless Pterygota.
Phylogeny and evolution
External phylogeny
Although traditionally grouped with
Other terrestrial arthropods, such as centipedes, millipedes, scorpions, spiders, woodlice, mites, and ticks are sometimes confused with insects since their body plans can appear similar, sharing (as do all arthropods) a jointed exoskeleton. However, upon closer examination, their features differ significantly; most noticeably, they do not have the six-legged characteristic of adult insects.[25]
A
Panarthropoda |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Four large-scale radiations of insects have occurred: beetles (from about 300 million years ago), flies (from about 250 million years ago), moths and wasps (both from about 150 million years ago).[27] These four groups account for the majority of described species.
The origins of insect flight remain obscure, since the earliest winged insects currently known appear to have been capable fliers. Some extinct insects had an additional pair of winglets attaching to the first segment of the thorax, for a total of three pairs. As of 2009, no evidence suggests the insects were a particularly successful group of animals before they evolved to have wings.[28]
The remarkably successful Hymenoptera (wasps, bees, and ants) appeared as long as 200 million years ago in the Triassic period, but achieved their wide diversity more recently in the Cenozoic era, which began 66 million years ago. Some highly successful insect groups evolved in conjunction with flowering plants, a powerful illustration of coevolution.[34]
Internal phylogeny
The internal phylogeny is based on the works of Sroka, Staniczek & Bechly 2014,[35] Prokop et al. 2017[36] and Wipfler et al. 2019.[37]
Insecta |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Taxonomy
Traditional morphology-based or appearance-based
Insects can be divided into two groups historically treated as subclasses: wingless insects, known as Apterygota, and winged insects, known as Pterygota. The Apterygota consisted of the primitively wingless orders Archaeognatha (jumping bristletails) and Zygentoma (silverfish). However, Apterygota is not a monophyletic group, as Archaeognatha are the sister group to all other insects, based on the arrangement of their
Paleoptera and Neoptera are the winged orders of insects differentiated by the presence of hardened body parts called
The Exopterygota likely are paraphyletic in regard to the Endopterygota. The Neuropterida are often lumped or split on the whims of the taxonomist. Fleas are now thought to be closely related to boreid mecopterans.[46] Many questions remain in the basal relationships among endopterygote orders, particularly the Hymenoptera.
Evolutionary relationships
Insects are prey for a variety of organisms, including terrestrial vertebrates. The earliest vertebrates on land existed 400 million years ago and were large amphibious
Insects were among the earliest terrestrial
Diversity

Estimates of the total number of insect species, or those within specific orders, often vary considerably. Globally, averages of these estimates suggest there are around 1.5 million beetle species and 5.5 million insect species, with about 1 million insect species currently found and described.[49] E. O. Wilson has estimated that the number of insects living at any one time are around 10 quintillion (10 billion billion).[50]
Between 950,000 and 1,000,000 of all described species are insects, so over 50% of all described eukaryotes (1.8 million) are insects (see illustration). With only 950,000 known non-insects, if the actual number of insects is 5.5 million, they may represent over 80% of the total. As only about 20,000 new species of all organisms are described each year, most insect species may remain undescribed, unless the rate of species descriptions greatly increases. Of the 24 orders of insects, four dominate in terms of numbers of described species; at least 670,000 identified species belong to
As of 2017, at least 66 insect species extinctions had been recorded in the previous 500 years, generally on oceanic islands.[52] Declines in insect abundance have been attributed to artificial lighting,[53] land use changes such as urbanization or agricultural use,[54][55] pesticide use,[56] and invasive species.[57] Studies summarized in a 2019 review suggested that a large proportion of insect species is threatened with extinction in the 21st century.[58] The ecologist Manu Sanders notes that the 2019 review was biased by mostly excluding data showing increases or stability in insect population, with the studies limited to specific geographic areas and specific groups of species.[59] A larger 2020 meta-study, analyzing data from 166 long-term surveys, suggested that populations of terrestrial insects are decreasing rapidly, by about 9% per decade.[60][61] Claims of pending mass insect extinctions or "insect apocalypse" based on a subset of these studies have been popularized in news reports, but often extrapolate beyond the study data or hyperbolize study findings.[62] Other areas have shown increases in some insect species, although trends in most regions are currently unknown. It is difficult to assess long-term trends in insect abundance or diversity because historical measurements are generally not known for many species. Robust data to assess at-risk areas or species is especially lacking for arctic and tropical regions and a majority of the southern hemisphere.[62]
Order | Extant species described |
---|---|
Archaeognatha | 513 |
Zygentoma | 560 |
Ephemeroptera
|
3,240 |
Odonata | 5,899 |
Orthoptera | 23,855 |
Neuroptera | 5,868 |
Phasmatodea | 3,014 |
Embioptera | 463 |
Notoptera | 54 |
Plecoptera | 3,743 |
Dermaptera
|
1,978 |
Zoraptera | 37 |
Mantodea
|
2,400 |
Blattodea | 7,314 |
Psocoptera | 5,720 |
Phthiraptera
|
5,102 |
Thysanoptera
|
5,864 |
Hemiptera | 103,590 |
Hymenoptera | 116,861 |
Strepsiptera | 609 |
Coleoptera
|
386,500 |
Megaloptera | 354 |
Raphidioptera
|
254 |
Trichoptera
|
14,391 |
Lepidoptera | 157,338 |
Diptera
|
155,477 |
Siphonaptera
|
2,075 |
Mecoptera | 757 |
Morphology and physiology
External
Insects have
Segmentation
The
The thorax is a tagma composed of three sections, the prothorax, mesothorax and the metathorax. The anterior segment, closest to the head, is the prothorax, with the major features being the first pair of legs and the pronotum. The middle segment is the mesothorax, with the major features being the second pair of legs and the anterior wings. The third and most posterior segment, abutting the abdomen, is the metathorax, which features the third pair of legs and the posterior wings. Each segment is delineated by an intersegmental suture. Each segment has four basic regions. The dorsal surface is called the tergum (or notum) to distinguish it from the abdominal terga.[38] The two lateral regions are called the pleura (singular: pleuron) and the ventral aspect is called the sternum. In turn, the notum of the prothorax is called the pronotum, the notum for the mesothorax is called the mesonotum and the notum for the metathorax is called the metanotum. Continuing with this logic, the mesopleura and metapleura, as well as the mesosternum and metasternum, are used.[64]
The abdomen is the largest tagma of the insect, which typically consists of 11–12 segments and is less strongly sclerotized than the head or thorax. Each segment of the abdomen is represented by a sclerotized tergum and sternum. Terga are separated from each other and from the adjacent sterna or pleura by membranes. Spiracles are located in the pleural area. Variation of this ground plan includes the fusion of terga or terga and sterna to form continuous dorsal or ventral shields or a conical tube. Some insects bear a sclerite in the pleural area called a laterotergite. Ventral sclerites are sometimes called laterosternites. During the embryonic stage of many insects and the postembryonic stage of primitive insects, 11 abdominal segments are present. In modern insects there is a tendency toward reduction in the number of the abdominal segments, but the primitive number of 11 is maintained during embryogenesis. Variation in abdominal segment number is considerable. If the Apterygota are considered to be indicative of the ground plan for pterygotes, confusion reigns: adult Protura have 12 segments, Collembola have 6. The orthopteran family Acrididae has 11 segments, and a fossil specimen of Zoraptera has a 10-segmented abdomen.[64]
Exoskeleton
The insect outer skeleton, the cuticle, is made up of two layers: the
During growth insects goes through a various number of instars where the old exoskeleton is shed, but once they reach sexual maturity, they stop molting. The exceptions are apterygote (ancestrally wingless) insects. Mayflies are the only insects with a sexually immature instar with functional wings, called subimago.[65]
Insects are the only invertebrates to have developed active flight capability, and this has played an important role in their success.[38]: 186 Their flight muscles are able to contract multiple times for each single nerve impulse, allowing the wings to beat faster than would ordinarily be possible.
Having their muscles attached to their exoskeletons is efficient and allows more muscle connections.
Internal
Nervous system
The
The
At least some insects have
Insects are capable of learning.[72]
Digestive system
An insect uses its digestive system to extract nutrients and other substances from the food it consumes.
There is extensive variation among different
This is the result of extreme adaptations to various lifestyles. The present description focuses on a generalized composition of the digestive system of an adult orthopteroid insect, which is considered basal to interpreting particularities of other groups.The main structure of an insect's digestive system is a long enclosed tube called the
Foregut

The first section of the alimentary canal is the
Digestion starts in
From there, the pharynx passes food to the esophagus, which could be just a simple tube passing it on to the crop and proventriculus, and then onward to the midgut, as in most insects. Alternately, the foregut may expand into a very enlarged crop and proventriculus, or the crop could just be a diverticulum, or fluid-filled structure, as in some Diptera species.[77]: 30–31
Midgut
Once food leaves the crop, it passes to the midgut (element 13 in numbered diagram), also known as the mesenteron, where the majority of digestion takes place. Microscopic projections from the midgut wall, called microvilli, increase the surface area of the wall and allow more nutrients to be absorbed; they tend to be close to the origin of the midgut. In some insects, the role of the microvilli and where they are located may vary. For example, specialized microvilli producing digestive enzymes may more likely be near the end of the midgut, and absorption near the origin or beginning of the midgut.[77]: 32
Hindgut
In the hindgut (element 16 in numbered diagram), or proctodaeum, undigested food particles are joined by uric acid to form fecal pellets. The rectum absorbs 90% of the water in these fecal pellets, and the dry pellet is then eliminated through the anus (element 17), completing the process of digestion. Envaginations at the anterior end of the hindgut form the Malpighian tubules, which form the main excretory system of insects.
Excretory system
Insects may have one to hundreds of Malpighian tubules (element 20). These tubules remove nitrogenous wastes from the hemolymph of the insect and regulate osmotic balance. Wastes and solutes are emptied directly into the alimentary canal, at the junction between the midgut and hindgut.[38]: 71–72, 78–80
Reproductive system
The reproductive system of female insects consist of a pair of
For males, the reproductive system is the