Interferon gamma

Source: Wikipedia, the free encyclopedia.
(Redirected from
Interferon type II
)
IFNG
Gene ontology
Molecular function
Cellular component
Biological process
Sources:Amigo / QuickGO
Ensembl
UniProt
RefSeq (mRNA)

NM_000619

NM_008337

RefSeq (protein)

NP_000610

NP_032363

Location (UCSC)Chr 12: 68.15 – 68.16 MbChr 10: 118.28 – 118.28 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse
Interferon gamma
SCOP2
1rfb / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
Interferon gamma
Clinical data
Trade namesActimmune
AHFS/Drugs.comMonograph
MedlinePlusa601152
ATC code
Identifiers
  • Human interferon gamma-1b
CAS Number
DrugBank
ChemSpider
  • none
UNII
ChEMBL
Chemical and physical data
FormulaC761H1206N214O225S6
Molar mass17145.65 g·mol−1
 ☒NcheckY (what is this?)  (verify)

Interferon gamma (IFN-γ) is a

vesicular stomatitis virus. Those reports also contained the basic observation underlying the now widely employed IFN-γ release assay used to test for tuberculosis. In humans, the IFN-γ protein is encoded by the IFNG gene.[9][10]

Through cell signaling, IFN-γ plays a role in regulating the immune response of its target cell.

interferon type 1, binds to different receptors, and is encoded by a separate chromosomal locus.[15] Type II IFN has played a role in the development of cancer immunotherapy treatments due to its ability to prevent tumor growth.[13]

Function

IFN-γ, or type II interferon, is a cytokine that is critical for

immunomodulatory effects. IFN-γ is produced predominantly by natural killer cells (NK) and natural killer T cells (NKT) as part of the innate immune response, and by CD4 Th1 and CD8 cytotoxic T lymphocyte (CTL) effector T cells once antigen-specific immunity develops[16][17] as part of the adaptive immune response. IFN-γ is also produced by non-cytotoxic innate lymphoid cells (ILC), a family of immune cells first discovered in the early 2010s.[18]

The primary cells that secrete type II IFN are CD4+ T helper 1 (Th1) cells, natural killer (NK) cells, and CD8+ cytotoxic T cells. It can also be secreted by antigen presenting cells (APCs) such as dendritic cells (DCs), macrophages (MΦs), and B cells to a lesser degree. Type II IFN expression is upregulated by the production of interleukin cytokines, such as IL-12, IL-15, IL-18, as well as type I interferons (IFN-α and IFN-β).[13] Meanwhile, IL-4, IL-10, transforming growth factor-beta (TGF-β) and glucocorticoids are known to downregulate type II IFN expression.[14]

Type II IFN is a cytokine, meaning it functions by signaling to other cells in the immune system and influencing their immune response. There are many immune cells type II IFN acts on. Some of its main functions are to induce IgG isotype switching in B cells; upregulate major histocompatibility complex (MHC) class II expression on APCs; induce CD8+ cytotoxic T cell differentiation, activation, and proliferation; and activate macrophages. In macrophages, type II IFN stimulates IL-12 expression. IL-12 in turn promotes the secretion of IFN-γ by NK cells and Th1 cells, and it signals naive T helper cells (Th0) to differentiate into Th1 cells.[11]

Structure

The IFN-γ monomer consists of a core of six α-helices and an extended unfolded sequence in the C-terminal region.[19][20] This is shown in the structural models below. The α-helices in the core of the structure are numbered 1 to 6.

Figure 1. Line and cartoon representation of an IFN-γ monomer.[20]

The biologically active dimer is formed by anti-parallel inter-locking of the two monomers as shown below. In the cartoon model, one monomer is shown in red, the other in blue.

Figure 2. Line and cartoon representation of an IFN-γ dimer.[20]

Receptor binding

IFNGR1 receptor molecules.[20]