Interglacial

Source: Wikipedia, the free encyclopedia.
(Redirected from
Interglaciation
)
Shows the pattern of temperature and ice volume changes associated with recent glacials and interglacials

An interglacial period (or alternatively interglacial, interglaciation) is a geological interval of warmer global average temperature lasting thousands of years that separates consecutive glacial periods within an ice age. The current Holocene interglacial began at the end of the Pleistocene, about 11,700 years ago.

Pleistocene

During the 2.5 million years of the Pleistocene, numerous glacials, or significant advances of continental ice sheets, in North America and Europe, occurred at intervals of approximately 40,000 to 100,000 years. The long glacial periods were separated by more temperate and shorter interglacials.

During interglacials, such as the present one, the climate warms and the

ocean sediment
cores provide more quantitative and accurately-dated evidence for temperatures and total ice volumes.

Interglacials and glacials coincide with cyclic changes in

obliquity. The third is the wobbling motion of Earth's axis, or precession.[1]

In the Southern Hemisphere, warmer summers occur when the lower-half of Earth is tilted toward the Sun and the planet is nearest the Sun in its elliptical orbit. Cooler summers occur when Earth is farthest from the Sun during the Southern Hemisphere summer. Such effects are more pronounced when the eccentricity of the orbit is large. When the obliquity is large, seasonal changes are more extreme.[2]

Interglacials are a useful tool for geological mapping and for anthropologists, as they can be used as a dating method for

hominid fossils.[3]

Brief periods of milder climate that occurred during the last glacial are called

interstadials
. Most, but not all, interstadials are shorter than interglacials. Interstadial climates may have been relatively warm, but not necessarily. Because the colder periods (stadials) have often been very dry, wetter (not necessarily warmer) periods have been registered in the sedimentary record as interstadials as well.

The

proxy
for the average global temperature, is an important source of information for changes in Earth's climate.

An interglacial optimum, or climatic optimum of an interglacial, is the period within an interglacial that experienced the most 'favourable'

glacials
). During an interglacial optimum, sea levels rise to their highest values, but not necessarily exactly at the same time as the climatic optimum.

Specific interglacials

The last six interglacials are:

See also

References

  1. ^ Eldredge, S. "Ice Ages – What are they and what causes them?". Utah Geological Survey. Retrieved 2 March 2013.
  2. ^ Rieke, G. "Long Term Climate".
  3. .
  4. . Retrieved 20 Dec 2018.